

ETCHE FRANCE

51 Rue des Communaux, Reyrieux (01)

Diagnostic environnemental du milieu souterrain

Rapport

Réf : CESICE210146 / RESICE12466-01 CLBE / PC / SOGA

26/03/2021

ETCHE FRANCE

51 Rue des Communaux, Reyrieux (01)

Diagnostic environnemental du milieu souterrain

Pour cette étude, le chef du projet est Philippe CAMPS

Objet de l'indice	Date	Indice	Rédaction Nom / signature	Vérification Nom / signature	Validation Nom / signature
Rapport	26/03/2021	01	C. BERRY	P. CAMPS	S. GARNIER

Numéro de contrat / de rapport :	Réf : CESICE210146 / RESICE12466-01
Numéro d'affaire :	A55333
Domaine technique :	SP012
Mots clé du thésaurus	DIAGNOSTIC ENVIRONNEMENTAL DES SOLS : ZONE SINISTREE

BURGEAP Agence Centre-Est • 19, rue de la Villette – 69425 Lyon CEDEX 03 Tél : 04.37.91.20.50 • Fax : 04.37.91.20.69 • burgeap.lyon@groupeginger.com

SOMMAIRE

Synt	inese te	cnnique	5
1.	Codific	cation des prestations	8
2.	Introdu	uction	9
	2.1	Objet de l'étude	9
	2.2	Documents de référence et ressources documentaires	
3.	Donné	es disponibles	11
	3.1 3.2	Synthèse de l'étude historique et documentaire	
	3.3	Informations relatives à l'incendie du 17 octobre 2020	15
4.	Descri	ption de la zone d'étude	15
5.	Investi	gations sur les sols (A200)	18
	5.1 5.2	Nature des investigations Observations et mesures de terrain	
	5.3	Stratégie et mode opératoire d'échantillonnage	
	5.4	Conservation des échantillons	
	5.5 5.6	Programme analytique sur les solsValeurs de référence pour les sols	
	5.7	Résultats et interprétation des analyses sur les sols	
6.	Synthe	èse des impacts et schéma conceptuel	30
	6.1	Synthèse des impacts dans les différents milieux	30
	6.2	Schéma conceptuel	
7.	Mesur	es de gestion	31
	7.1	En matière de gestion des sources concentrées et risques sanitaires	31
	7.2	Gestion des terres excavées, bétons et enrobés de la zone sinistrée	
		7.2.1 Réemploi sur site	
8.	Synthe	ese et recommandations	
J.	8.1	Synthèse	
	8.2	Recommandations	
9.	Limito	s d'utilisation d'une étude de pollution	36
J.		a annadion a dhe etude de pondhon	50

FIGURES

Figure 1 : Localisation du site d'étude (source : GEOPORTAIL)	9
Figure 2 : Localisation des sondages prévisionnels	14
Figure 3 : Photographie de l'incendie sur le site d'étude (source : Le Progrès)	15
Figure 4 : Localisation et environnement de la zone d'étude (source : Géoportail, annotation	
BŬRGEAP)	
Figure 5 : Localisation des sondages de sol	20
Figure 6 : Localisation des impacts sur le site d'étude	32
Figure 7 : Localisation des impacts sur le site d'étude	
TADLEALLY	
TABLEAUX	
Tableau 1 : Programme d'investigations prévisionnel sur la zone non sinistrée	12
Tableau 2 : Programme d'investigations prévisionnel sur la zone sinistrée	
Tableau 3 : Localisation et environnement du site d'étude	15
Tableau 4 : Investigations réalisées sur les sols	18
Tableau 5 : Niveaux suspects et résultats des mesures de terrain	
Tableau 6 : Analyses réalisées sur les sols	22
Tableau 7 : Résultats d'analyses sur sol brut des sondages de sol	
Tableau 8 : Résultats d'analyses sur sol brut des sondages de sol	
Tableau 9 : Résultats d'analyses sur sol brut des sondages de sol	
Tableau 10 : Résultats d'analyses sur éluats des sondages de sol	
Tableau 11 : Résultats d'analyses sur éluats des sondages de sol	
Tableau 12 : : Résultats d'analyses sur éluats des sondages de sol	
Tableau 13 : Volumes de terres non inertes excavées dans le cadre du projet	
Tableau 14 : Estimation du coût de gestion des matériaux non inertes excavés	

ANNEXES

- Annexe 1. Fiches d'échantillonnage des sols
- Annexe 2. Bordereaux d'analyse des sols
- Annexe 3. Méthodes analytiques, LQ et flaconnage
- Annexe 4. Propriétés physico-chimiques
- Annexe 5. Glossaire

Synthèse technique

Client	ETCHE FRANCE	
Informations sur le site	 Intitulé/adresse du site : 51 Rue des Communaux, Reyrieux (01) Parcelle cadastrale : section AC n°309 et 319 Superficie totale : 11,4 ha environ Propriétaire actuel : ETCHE FRANCE Usage et exploitant actuel : ITM LAI, plateforme logistique Intermarché (produits agro-alimentaire), dont station-service pour poids-lourds 	
Statut réglementaire	 Installation ICPE : oui Régime ICPE : autorisation en date du 02/08/2000 Situation administrative : activité en cours 	
Contexte de l'étude Suite à l'incendie de la cellule Nord, l'actuel propriétaire du site envisage de réaménagement de l'ensemble du site.		
Projet d'aménagement	 Réaménagement de la cellule Nord (20 000 m²) ou démolition des actuels locaux et réaménagement du site avec la construction d'un nouvel entrepôt d'environ 60 000 m². 	

Un audit de phase 1 « évaluation du risque de pollution » a été réalisé par GALTIER en 2011, le rapport conclut à un risque de pollution non significatif. Un diagnostic de la qualité des sols a été réalisé par QUALICONSULT en mai 2020, avant l'incendie (rapport D90 01 20 00149 en date du 24/06/2020). 10 sondages de 1 à 4 m de profondeur ont été réalisés sur l'ensemble du site (hors bâti) au droit des installations potentiellement polluantes. Les résultats ont mis en évidence : des anomalies modérées en métaux sur sols brut (As, Cr, Cu et Hg); des traces ponctuelles de HCT C10-C40; la non détection des BTEX, HAP et COHV. Une étude historique documentaire et de vulnérabilité réalisée par BURGEAP, rapport référencé CESICE210146 / RESICE12134-01 en date du 17/02/2021. Un diagnostic environnemental du milieu souterrain au droit de la zone sinistrée (Nord du site d'étude) réalisée par BURGEAP, rapport référencé CESICE210146 / RESICE12292-02 en date du 26/03/2021. Les résultats ont mis en évidence : Sur les sols : • aucune anomalie sur les sols bruts et sur éluats entre 0 et 3 mètres de Données disponibles / profondeur (profondeur maximale des investigations) qualité du milieu aucune anomalie en dioxines, furanes et phtalates sur les échantillons souterrain analysés les matériaux sont caractérisés comme inertes (arrêté du 12/12/2014). En cas d'évacuation hors site, ces matériaux devront être orientés sur des filières de type ISDI. Le réemploi des terres sur site ou la valorisation hors site est à privilégier. Sur les enrobés: aucune anomalie en HAP, phtalates, dioxines et furanes relevée : en cas d'évacuation hors site, ces matériaux devront être orientés sur des filières de type ISDI. Le réemploi des terres sur site ou la valorisation hors site est à privilégier. Sur les bétons : aucune anomalie en dioxines, furanes et phtalates au droit des échantillons analysés les matériaux sont caractérisés comme inertes (arrêté du 12/12/2014). En cas d'évacuation hors site, ces matériaux devront être orientés sur des filières de type ISDI. Le réemploi des terres sur site ou la valorisation hors site est à privilégier. • sous une épaisseur d'enrobé (environ 5 cm) et/ou dalle béton (environ 20 à 30 cm), présence de sable graveleux et galets plus ou moins limoneux suivant les zones jusqu'à 5 mètres de profondeur (profondeur maximales des investigations); Géologie / lentilles d'argiles grisâtres et orangées avec galets grossiers observées au droit de hydrogéologie certains sondages entre 0 et 2 mètres de profondeur. Aucune venue d'eau n'a été observée durant les investigations. Investigations réalisées 16 sondages à la tarière mécanique entre 2 et 5 mètres de profondeur. Polluants recherchés Sols: Pack ISDI + 8 métaux, HCT C10-C40, HAP et COHV.

	T
	Les investigations menées du 18/02/2021 au 19/02/2021 ont montré :
	Sur les sols bruts :
	 une anomalie ponctuelle modérée en plomb sur les sols bruts au droit du sondage BGP10 dans le premier mètre de sable limono-graveleux;
Impacts identifiés lors	 aucune anomalie en composés organiques sur les échantillons analysés ;
de cette étude	Sur éluats :
	 des anomalies ponctuelles en fluorures sur éluats au droit des sondages BG4, BGP6 et BGP14 jusqu'à 1 mètre de profondeur;
	 ces matériaux sont caractérisés comme non inertes (arrêté du 12/12/2014). En cas d'évacuation hors site, ces matériaux devront être orientés sur des filières de type ISDI+. Le réemploi des terres sur site ou la valorisation hors site est à privilégier.
Schéma conceptuel	En l'absence de pollution significative des sols, aucun schéma conceptuel n'est réalisé
	Compte tenu de ces résultats, il est recommandé :
	 En matière de gestion des pollutions concentrées et de risques sanitaires: le site d'étude est compatible avec les usages projetés sous réserve du recouvrement pérenne des terres en place au droit du sondage S5 (0,3-1m) présentant une anomalie ponctuelle et modérée en Arsenic par un revêtement ou une couche de matériaux sains de 30 cm d'épaisseur afin d'éviter tout contact direct avec les futurs usagers.
	En matière de gestion de déblais :
	 les terres en place au droit des sondages BGP4, BGP6 et BGP14 entre 0 et 1 mètre de profondeur sont non inertes. En cas d'évacuation hors site, ces matériaux devront être orientés sur des filières de type ISDI+. Une réutilisation sur site ou valorisation est à privilégier;
	Impact financier
Conséquences sur le projet / recommandations	 En cas d'évacuation, les matériaux excavés pourront être dirigés vers une filière de type ISDI +, pour un coût de gestion (transport/élimination) d'environ 45 €HT/ tonne, hors frais liés au suivi des opérations (gestion, suivi, analyses, réception) et/ou au terrassement, hors aléas et hors solutions d'optimisation.
recommandations	Solutions d'optimisation
	 étude des solutions de réemploi sur site des matériaux non inertes compatibles du point de vue sanitaire en fonction de la modularité du projet d'aménagement et de la qualité géotechnique des matériaux;
	 étude des possibilités de réutilisation hors site des matériaux non inertes, conformément aux modalités exposées dans le Guide de valorisation hors site des terres excavées issues de sites et sols potentiellement pollués dans les projets d'aménagement (Ministère de la transition écologique, novembre 2017); cette solution présente toutefois un certain nombre de contraintes qu'il conviendra d'analyser afin d'en vérifier la pertinence;
	 réalisation d'analyses complémentaires avant travaux (sous-maillage) adaptées au plan de terrassement ou pendant travaux (mise en stockage temporaire et analyses par lots d'environ 100 m³), en considérant exclusivement les paramètres déclassants identifiés;
	 consultation directe des entreprises de travaux permettant potentiellement d'optimiser l'opération financière pour la gestion de ces terres non inertes.

1. Codification des prestations

Notre étude est conforme à la méthodologie nationale de gestion des sites et sols pollués d'avril 2017 et aux exigences de la **norme AFNOR NF X 31-620-2 « Qualité du sol – Prestations de services relatives aux sites et sols pollués »**, pour le domaine A : « Etudes, assistance et contrôle ». Elle comprend les prestations suivantes :

éléme	tations entaires (A)	Objectifs
	ernées	
	A100	Visite du site
	A110	Etudes historiques, documentaires et mémorielles
	A120	Etude de vulnérabilité des milieux
	A130	Elaboration d'un programme prévisionnel d'investigations
	A200	Prélèvements, mesures, observations et/ou analyses sur les sols
	A210	Prélèvements, mesures, observations et/ou analyses sur les eaux souterraines
	A220	Prélèvements, mesures, observations et/ou analyses sur les eaux superficielles et/ou les sédiments
	A230	Prélèvements, mesures, observations et/ou analyses sur les gaz du sol
	A240	Prélèvements, mesures, observations et/ou analyses sur l'air ambiant et les poussières atmosphériques
	A250	Prélèvements, mesures, observations et/ou analyses sur les denrées alimentaires
	A260	Prélèvements, mesures, observations et/ou analyses sur les terres excavées
	A270	Interprétation des résultats des investigations
	A300	Analyse des enjeux sur les ressources en eaux
	A310	Analyse des enjeux sur les ressources environnementales
	A320	Analyse des enjeux sanitaires
	A330	Identification des différentes options de gestion possibles et réalisation d'un bilan coûts/avantages
	A400	Dossiers de restriction d'usage, de servitudes

	Prestations globales (A) concernées	Objectifs
	AMO Assistance à Maîtrise d'ouvrage en phase études	Assister et conseiller son client pendant tout ou partie de la durée du projet, en phase études.
	LEVE Levée de doute	Le site relève-t-il de la politique nationale de gestion des sites pollués, ou bien est-il « banalisable » ?
	INFOS	Réaliser les études historiques, documentaires et de vulnérabilité, afin d'élaborer un schéma conceptuel et, le cas échéant, un programme prévisionnel d'investigations.
	DIAG	Investiguer des milieux (sols, eaux souterraines, eaux superficielles et sédiments, gaz du sol, air ambiant) afin d'identifier et/ou caractériser les sources potentielles de pollution, l'environnement local témoin, les vecteurs de transfert, les milieux d'exposition des populations et identifier les opérations nécessaires pour mener à bien le projet (prélèvements, analyses)
	PG Plan de gestion dans le cadre d'un projet de réhabilitation ou d'aménagement d'un site	Etudier, en priorité, les modalités de suppression des pollutions concentrées. Cette prestation s'attache également à maîtriser les impacts et les risques associés (y compris dans le cas où la suppression des pollutions concentrées s'avère techniquement complexe et financièrement disproportionnée) et à gérer les pollutions résiduelles et diffuses. Réalisation d'un bilan coûts-avantages (A330) qui permet un arbitrage entre les différents scénarios de gestion possibles (au moins deux), validés d'un point de vue sanitaire (A320) Préconisations sur la nécessité de réaliser, ou non, les prestations PCT (dont B111 et/ou B112 (voir NF X 31-620-3)), CONT, SUIVI, A400, et la définition des modalités de leur mise en œuvre ; ces préconisations peuvent également concerner l'organisation, la sécurité et l'encadrement des travaux à réaliser ; Préciser les mécanismes de conservation de la mémoire en lien avec les scénarios de gestion proposés
	La prestation IEM est mise en œuvre en cas de : • mise en évidence d'une pollution historique sur une ze l'usage est fixé (installation en fonctionnement, considentiel, etc.); • mise en évidence d'une pollution hors des limites d'un sit signal sanitaire. Comparable à une photographie de l'état des milieux usages, la prestation IEM vise à s'assurer que l'état des d'exposition est compatible avec les usages existants [supermet de distinguer les situations qui : • ne nécessitent aucune action particulière; • peuvent faire l'objet d'actions simples de gestion pour récompatibilité entre l'état des milieux et leurs usages consinécessitent la mise en œuvre d'un plan de gestion	
	SUIVI	Suivi environnemental
	BQ Bilan quadriennal	Interpréter les résultats des données recueillies au cours des quatre dernières années de suivi Mettre à jour l'analyse des enjeux concernés par le suivi sur la période sur les ressources en eau, environnementales et l'analyse des enjeux sanitaires.
Contrôles Con		Vérifier la conformité des travaux d'investigation ou de surveillance Contrôler que les mesures de gestion sont réalisées conformément aux dispositions prévues
	XPER	Expertise dans le domaine des sites et sols pollués
VERIF Evaluation du passif environnemental Effectuer les vérifications en vue d'évaluer le passif environnemental lors d'un projet d'acquisition d'une entreprise		Effectuer les vérifications en vue d'évaluer le passif environnemental lors d'un projet d'acquisition d'une entreprise

2. Introduction

2.1 Objet de l'étude

La société ETCHE FRANCE est propriétaire du site localisé au 51 Rue des Communaux à Reyrieux (01).

Le site accueille actuellement des activités d'entreposage et de stockage non frigorifique de la société ITM LAI (plateforme logistique Intermarché). Ces activités sont soumises à autorisation au titre des Installations Classées pour la Protection de l'Environnement.

En octobre 2020, la partie nord de l'entrepôt a fait l'objet d'un vaste incendie. Le bâtiment sinistré fait actuellement l'objet de travaux de démolition. La seconde cellule de stockage au sud du site est en cours d'évacuation.

La société ETCHE FRANCE souhaite réaménager le site et construire un entrepôt neuf d'une surface de plancher d'environ 60 000 m².

Dans ce contexte, ETCHE FRANCE a missionné BURGEAP pour la réalisation d'un diagnostic environnemental du milieu souterrain au droit de l'ensemble du site d'étude, objet de ce rapport. Pour rappel le diagnostic environnemental de la zone sinistrée a fait l'objet d'un rapport spécifique (CESICE210146 / RESICE12292-02 en date du 26/03/2021).

La localisation du site est présentée en Figure 1.

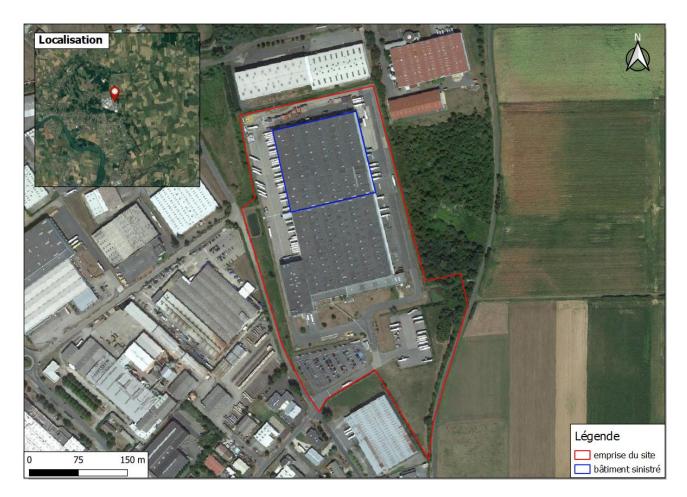


Figure 1 : Localisation du site d'étude (source : GEOPORTAIL)

2.2 Documents de référence et ressources documentaires

Le présent rapport s'articule autour des informations suivantes :

- Evaluation du risque de pollution Phase 1 par GALTIER référencé ACO/91.1579/.7-2011/Vp en date du 21/07/2011
- Rapport de diagnostic de la qualité environnementale des sols par QUALICONSULT, référencé D90012000149 en date du 24/06/2020 ;
- Etude historique documentaire et de vulnérabilité, rapport BURGEAP référencé CESICE210146 / RESICE12134-01 en date du 17/02/2021 ;
- Diagnostic environnemental du milieu souterrain de la zone sinistrée, rapport BURGEAP référencé CESICE210146 / RESICE12292-02 en date du 26/03/2021.

3. Données disponibles

3.1 Synthèse de l'étude historique et documentaire

BURGEAP a réalisé le 17/02/2021 une étude historique documentaire et de vulnérabilité référencée CESICE210146 / RESICE12134-01. Le paragraphe ci-dessous est un extrait de l'étude.

La société ETCHE FRANCE est propriétaire du site sis 51 Rue des Communaux à Reyrieux (01). Le site accueille actuellement des activités d'entreposage et de stockage non frigorifique de la société ITM LAI.

En octobre 2020, la partie nord de l'entrepôt a subi un incendie. Le bâtiment sinistré fait actuellement l'objet de travaux de démolition. La cellule de stockage au sud du site est en cours d'évacuation.

La société ETCHE FRANCE souhaite réaménager le site et construire un entrepôt neuf d'une surface de plancher d'environ 60 000 m².

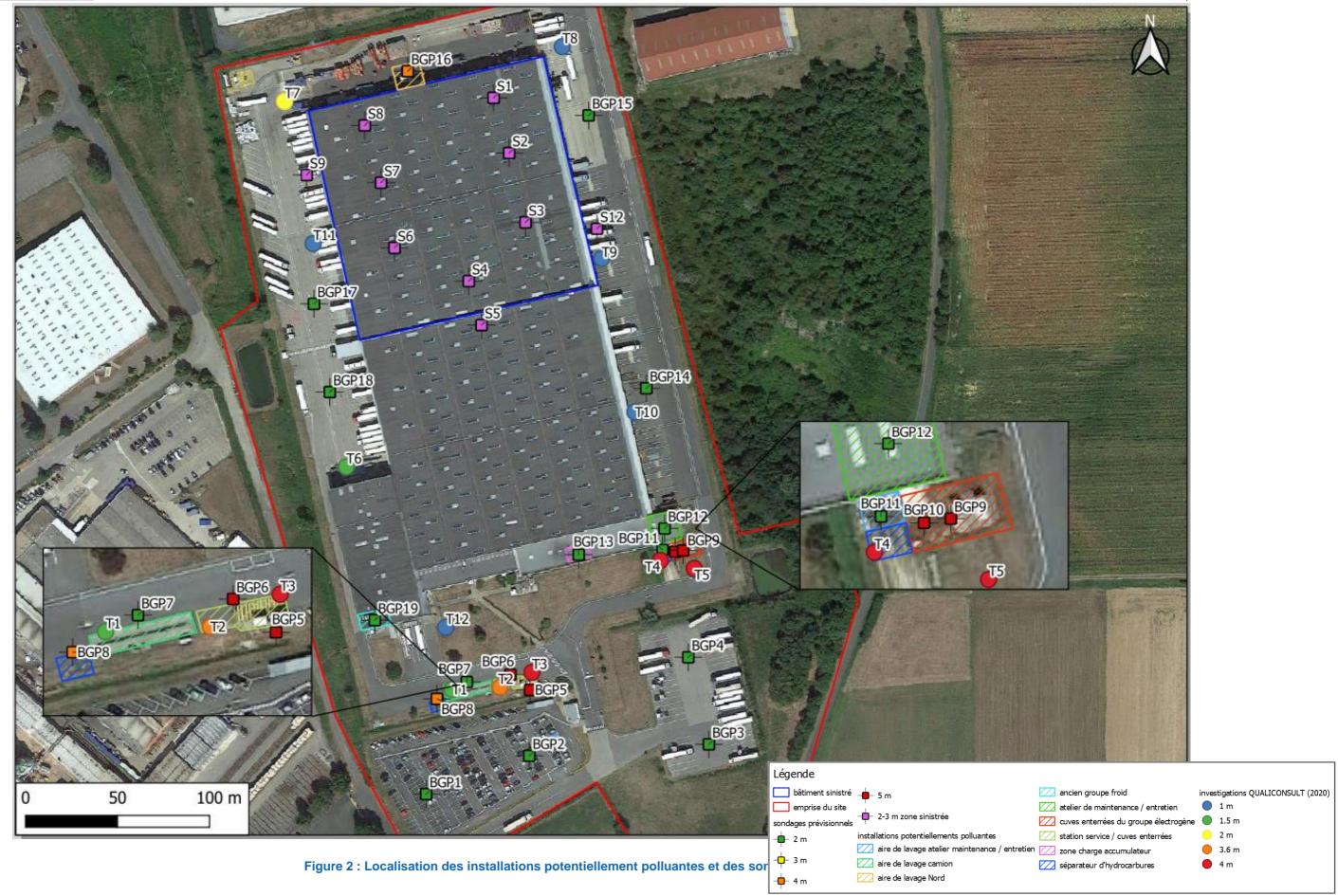
La visite de site réalisée le 22/01/2021 et les données recueillies lors de l'étude ont mis en évidence :

- la présence de parcelles agricoles jusqu'en 1989, date de construction de la partie Sud de l'entrepôt. La partie Nord est édifiée entre 1991 et 1992. Aucun changement majeur sur le site d'étude n'a été observé depuis;
- la présence de quatre sites BASIAS en amont/latéral hydraulique du site d'étude enregistré au nom des sociétés SMICTOM, SOTRADEL et Sa BERNARD et Cie avec respectivement des activités de gestion des déchets (déchèterie), stockage de matières plastiques et travail mécanique des métaux. Les activités pratiquées sur ces sites sont peu susceptibles d'avoir influencé la qualité des eaux souterraines au droit du site étudié en raison des formations géologiques présentent (alluvions fluviatiles dans une matrice limono-argileuse) et de la profondeur présumée de la nappe alluviale (20 mètres de profondeur environ).
- Le site d'étude est une ICPE, exploitée par la société ITM LOGISTIQUE ALIMENTAIRE INT soumise à autorisation pour l'entreposage et le stockage non frigorifique en date du 02/08/2000;
- un incendie a ravagé la partie Nord de l'entrepôt le 17 octobre 2020 ;
- la visite de site a mis en évidence la présence de sources potentielles de pollution : plusieurs cuves de fioul enterrées ont été identifiées sur le site, un transformateur électrique, des aires de lavage, une zone de stockage d'accumulateur, un ancien groupe froid, un local d'entretien et de maintenance, plusieurs séparateurs d'hydrocarbures.

Le **Tableau 2** ci-après présente le programme des investigations réalisées par BURGEAP compte tenu des données disponibles et de la nature du projet. Ces investigations ont eu pour but de déterminer si la qualité du milieu souterrain a été ou non dégradée par les activités exploitées sur le site.

Tableau 1 : Programme d'investigations prévisionnel sur la zone non sinistrée

Milieux reconnus	Prestations	Localisation	Sondages	Qté	Prof (m)	Substances analysées	Nombre d'échantillons
		Cuves	BGP5, 6, 9			Pack ISDI + 8 métaux	5
		hydrocarbures	et 10	4	5	HCT C10-C40, BTEX, HAP, 8 métaux	8
		Séparateurs		2	4	Pack ISDI + 8 métaux	2
		hydrocarbures	BGP8 et 16			HCT C10-C40, BTEX, HAP, 8 métaux	2
			BGP12	1	2	Pack ISDI + 8 métaux+ COHV	1
Sols	Sondages à la		BGP12			HCT C10-C40, HAP, BTEX, COHV, 8 métaux	1
3015	tarière mécanique		BGP 19	1	2	Pack ISDI + 8 métaux	1
						HCT C10-C40, BTEX, HAP, 8 métaux	1
			BGP13	1	1 2	Pack ISDI + 8 métaux	1
						HCT C10-C40, BTEX, HAP, 8 métaux	1
		Reste du site (voiries et parking extérieurs, aires de lavage)	BGP1, 2, 3, 4, 7, 11, 14, 15, 17 et 18	10	2	Pack ISDI + 8 métaux	17
Sous-total			-	19	54	-	40


Tableau 2 : Programme d'investigations sur la zone sinistrée

Milieux reconnu s	Prestation s	Localisation	Qté	Prof (m)	Substances analysées	Nombre d'échantillon s
					Pack ISDI + 8 métaux	24
	Sondages à	Cellule sinistrée et zone goudronnée aux abords de la cellule	10 (S1 à S12)		Phtalates	4 sols 2 bétons
	la tarière mécanique			2 à 3 m	Dioxines et furanes	2 sols 2 bétons
Sols					Analyse sur béton : HCT, HAP, 8 métaux,	8 sur bétons
	Echantillon composite	Espaces verts en partie sud du site (échantillon composite pour l'évaluation des retombées atmosphériques de l'incendie)	1	0,1	HCT C10-C40, HAP, 8 métaux, dioxines	1
Sous-total		13	24-36	-	45	

- HCT = indice hydrocarbures totaux
- HAP = hydrocarbures aromatiques polycycliques (16 composés)
- 8 métaux = arsenic, cadmium, chrome, cuivre, nickel, plomb, zinc, mercure
- Pack ISDI conformément à l'arrêté du 12/12/2014 incluant :
 - a) sur sol brut : matière sèche, hydrocarbures C10-C40, hydrocarbures aromatiques polycycliques (HAP), hydrocarbures aromatiques monocycliques (BTEX), polychlorobiphényles (PCB), carbone organique total (COT), test de lixiviation EN 12457-2 (L/S = 10, 1x 24h)
 - b) sur éluat : métaux et métalloïdes (As, Ba, Cd, Cr, Cu, Hg, Mo, Ni, Pb, Sb, Se, Zn), chlorures, fluorures, sulfates, indice phénol, carbone organique total (COT), fraction soluble
- Pack éluats = métaux et métalloides (As, Ba, Cd, Cr, Cu, Hg, Mo, Ni, Pb, Sb, Se, Zn), chlorures, sulfates et fraction soluble

Ce programme est illustré en Figure 2.

3.2 Synthèse du diagnostic environnemental du milieu souterrain de la zone sinistrée

Les investigations du 18/01/2021 au 19/01/2021 au droit de la zone sinistrée située au Nord du site d'étude ont montré :

- Sur les sols :
 - aucune anomalie sur les sols bruts et sur éluats entre 0 et 3 mètres de profondeur (profondeur maximale des investigations)
 - aucune anomalie en dioxines, furane et phtalates sur les échantillons analysés
 - les matériaux sont caractérisés comme inertes (arrêté du 12/12/2014). En cas d'évacuation hors site, ces matériaux devront être orientés sur des filières de type ISDI. Le réemploi des terres sur site ou la valorisation hors site est à privilégier.
- Sur les enrobés : aucune anomalie en HAP, pthtalates, dioxines et furanes relevée.
 - En cas d'évacuation hors site, ces matériaux devront être orientés sur des filières de type ISDI. Le réemploi des terres sur site ou la valorisation hors site est à privilégier.
- Sur les bétons :
 - aucune anomalie en dioxines, furanes et phtalates au droit des échantillons analysés
 - les matériaux sont caractérisés comme inertes (arrêté du 12/12/2014). En cas d'évacuation hors site, ces matériaux devront être orientés sur des filières de type ISDI. Le réemploi sur site ou la valorisation hors site est à privilégier.

4. Description de la zone d'étude

Le site d'étude est localisé 51 rue des Communaux à Reyrieux (01), plus précisément à l'Est de la zone industrielle de la commune de Reyrieux (**Figure 3**).

Tableau 3 : Localisation et environnement du site d'étude

Tableau 3 : Localisation et environnement du site d étude			
Adresse du site	51 Rue des Communaux, Reyrieux (01)		
Parcelles cadastrales	Section AC n°309 et 319		
Superficie totale	11,4 ha environ		
Altitude moyenne / Topographie	258,8 m NGF (Nivellement Général de la France) / terrain plat		
Propriétaires du site	ETCHE FRANCE		
Exploitant du site (et activité de l'exploitant)	Le site est actuellement occupé par ITM LAI, plateforme logistique Intermarch (produits agro-alimentaires) dont l'emprise est occupée par une station-servic pour poids-lourds au Sud.		
	Au Nord : société logistique de SOTRADEL (site des Beaux Monts) et déchèterie des bruyères. Plus au Nord, présence d'une zone résidentielle avec des habitations individuelles entourées de champs agricoles ;		
Abords du site (Figure 3)	Au Sud : également la société SOTRADEL (site de Belle Dombes) puis le village de Reyrieux composé principalement d'habitations individuelles et collectives entourées par des petits commerces de proximité ;		
	À l'Est : présence directe au Nord-Est de la société PLASSE qui fabrique des escaliers. L'environnement est ensuite composé par des parcelles forestières et agricoles ;		
	À l'Ouest : la zone industrielle de Reyrieux regroupant diverses industries du secteur secondaire et tertiaire (JP AUTO, MSK emballage, EUROCAST).		

▶ Diagnostic environnemental du milieu souterrain
 4. Description de la zone d'étude

Plus à l'Ouest, on retrouve quelques habitations individuelles entourées de champs agricoles bordés par des bois.

Figure 3 : Localisation et environnement de la zone d'étude (source : Géoportail, annotation : BURGEAP)

5. Investigations sur les sols (A200)

5.1 Nature des investigations

Date d'intervention	Du 18/02/2021 au 19/02/2021	
Prestataire de forage Technique de forage	ASTARUSCLE ENVIRONNEMENT Tarière mécanique	
Investigations menées	Cf. Tableau 3 et Figure 4	
	En raison de limites technique liée à la machine de forage et sécuritaire (zone ATEX), les sondages BGP12, BGP13 et BGP19 n'ont pas pu être réalisés.	
Ecarts au programme	Ces sondages étaient localisés au droit d'atelier de maintenance et d'entretien, et au droit de la zone de charge des accumulateurs.	
prévisionnel	Bien que ces zones soient effectivement le siège d'activités potentiellement polluante, les dalles béton en place visualisées lors de la visite de site apparaissent dans un bon état (pas de fissures ni de souillures mises en évidence). Aussi le risque de transfert d'une pollution vers le milieu souterrain apparait limité.	
Repli en fin de chantier	Sondages rebouchés avec les déblais de forage. Réfection des surfaces : réfection des surfaces avec enrobé à froid.	

Tableau 4 : Investigations réalisées sur les sols

Milieux reconnus	Prestations	Localisation	Sondages	Qté	Prof (m)	Substances analysées	Nomk d'échant
	Sondages à		BGP5, 6, 9			Pack ISDI + 8 métaux	4
		Cuves hydrocarbures	et 10	4	5	HCT C10-C40, BTEX, HAP, 8 métaux	7
		Cáparataura hudragarhura	5050	2	4	Pack ISDI + 8 métaux	2
Sols	la tarière mécanique	Séparateurs hydrocarbures	BGP8 et 16	2	4	HCT C10-C40, BTEX, HAP, 8 métaux	2
		Reste du site (voiries et	BGP1, 2, 3,			Pack ISDI + 8 métaux	10
		parking extérieurs, aires de lavage)	4, 7, 11, 14, 15, 17 et 18	10	2	HCT C10-C40, BTEX, HAP, 8 métaux, COHV	1
	Sou	ıs-total	-	16	48	-	26

- 8 métaux = arsenic, cadmium, chrome, cuivre, nickel, plomb, zinc, mercure
- HCT C10-C40 : Hydrocarbures totaux
- HAP = hydrocarbures aromatiques polycycliques
- COHV = composés organo-halogénés volatils (13 composés)
- Pack ISDI conformément à l'arrêté du 12/12/2014 incluant :
 - a) sur sol brut : matière sèche, hydrocarbures C10-C40, hydrocarbures aromatiques polycycliques (HAP), hydrocarbures aromatiques monocycliques (BTEX), polychlorobiphényles (PCB), carbone organique total (COT), test de lixiviation EN 12457-2 (L/S = 10, 1x 24h)
 - b) sur éluat : métaux et métalloïdes (As, Ba, Cd, Cr, Cu, Hg, Mo, Ni, Pb, Sb, Se, Zn), chlorures, fluorures, sulfates, indice phénol, carbone organique total (COT), fraction soluble

Les sondages de sol ont été réalisés principalement au droit des zones potentiellement polluées sur le site d'étude. Les investigations visent à :

- statuer sur la présence ou l'absence d'impact découlant des activités/installations actuelles et passées sur la qualité du sous-sol ;
- définir la qualité intrinsèque des matériaux présents au droit de l'ensemble du site d'étude;
- préciser la qualité chimique des matériaux en vue de déterminer leur potentiel de réutilisation sur le site ou d'évaluer les filières de gestion hors site ;

Les sondages ont été relevés par un géomètre expert sur site le 19/02/2021. Ils sont présentés sur la **Figure** 4.

On présente en Annexe 4 les propriétés chimiques des polluants recherchés et en Annexe 5 un glossaire.

5.2 Observations et mesures de terrain

Les terrains recoupés en sondage ont été décrits avant échantillonnage. Une partie des échantillons a fait l'objet d'analyses chimiques en laboratoire. Les descriptions ont porté sur leur lithologie et la présence ou non de niveaux jugés suspects.

Les niveaux de sol sont jugés suspects s'ils présentent des traces de souillures, des caractéristiques organoleptiques anormales (odeur, couleur, texture), des réponses positives au PID ou qu'ils renferment des matériaux de type déchets, mâchefers, verre, bois, briques, etc.

La présence de composés organiques volatils dans les gaz des sols et au niveau de chaque échantillon prélevé a été évaluée au moyen d'un détecteur à photo-ionisation (PID) équipé d'une lampe 10,6eV régulièrement calibré.

Au regard des observations réalisées au cours des investigations, la succession des formations géologiques au droit du site est la suivante :

- sous une épaisseur d'enrobé (environ 5 cm) et/ou dalle béton (environ 20 à 30 cm), présence de sables graveleux et galets renfermés dans une matrice plus ou moins limoneuse suivant les zones jusqu'à 5 mètres de profondeur (profondeur maximale des investigations);
- lentilles d'argiles grisâtres et orangées avec galets grossiers observées au droit de certains sondages entre 0 et 2 mètres de profondeur.

Aucune venue d'eau a été observée durant les investigations.

Les caractéristiques des niveaux suspects et les résultats des tests de terrain positifs (mesures PID) sont reportés dans le **Tableau 5**. L'intégralité des observations figure dans les fiches d'échantillonnage de sols rassemblées en **Annexe 1**.

Profondeur Sondage Indices de pollution Mesure de terrain (maximum relevé) BGP6 0,2-1 m Odeur hydrocarbures PID: 30,2 ppmV de 0 à 1 m BGP8 1-2 m PID: 0 ppmV Traces noirâtres BGP18 0-1 m Traces noirâtres PID: 0 ppmV

Tableau 5 : Niveaux suspects et résultats des mesures de terrain

5.3 Stratégie et mode opératoire d'échantillonnage

Après le levé de la coupe du sondage, le collaborateur de BURGEAP a procédé au prélèvement des échantillons de sols selon le protocole détaillé ci-après :

- un échantillon pour chaque horizon lithologique homogène ;
- un échantillon par mètre, si l'épaisseur de l'horizon dépasse 1 m;
- un échantillon de chaque niveau lithologique suspect.

Une fois prélevés, les échantillons ont été conditionnés dans des bocaux d'une contenance de 370 ml.

5.4 Conservation des échantillons

Après description, conditionnement et étiquetage, les échantillons de sol ont été stockés en glacière jusqu'à leur arrivée au laboratoire.

5.5 Programme analytique sur les sols

Les analyses chimiques ont été réalisées par le laboratoire AGROLAB.

0

0

Les échantillons soumis à analyse en laboratoire ont été choisis en fonction des observations de terrain.

Les méthodes analytiques, les limites de quantification et le descriptif du flaconnage utilisé figurent en **Annexe 3**.

Polluants recherchés

Cuves hydrocar bures

Pack ISDI + 8 métaux

Nombre d'échantillons analysés

Séparateur hydrocarbures

Aires de lavage
lavage

Voiries, parking extérieures

2

0

1

1

7

0

Tableau 6 : Analyses réalisées sur les sols

5.6 Valeurs de référence pour les sols

8 métaux + HCT + BTEX + HAP

COHV

Conformément à la méthodologie en vigueur, les concentrations dans les sols au droit de la zone d'étude ont été comparées en premier lieu à des concentrations caractéristiques de bruit de fond régionaux ou propre à certains contextes (urbain, agricole...). Dans un second temps, l'ensemble des résultats obtenus sur le site sera pris en compte pour évaluer le bruit de fond propre au site pour chaque famille de polluants et déterminer si le site présente des zones de pollution concentrée.

Ces valeurs de comparaison sont présentées dans les premières colonnes des tableaux de présentation des résultats d'analyse.

Métaux et métalloïdes sur sol brut	La gamme de concentrations qui sera utilisée pour comparaison est celle mise en évidence dans les sols naturels ordinaires (sans anomalie géochimique) dans le cadre du programme INRA-ASPITET. A défaut, nous utiliserons également les valeurs proposées par l'ATSDR (Agency for Toxic Substances and Disease Registry). Pour le plomb, le Haut Conseil de Santé Publique (HCSP) mentionne une valeur de 300 mg (Pb)/kg sol, comme étant une valeur seuil entraînant un dépistage du saturnisme infantile. Un seuil de vigilance a également été établi à 100 mg/kg de plomb dans les sols. Ces valeurs sont des valeurs de gestion mais ne constituent pas la valeur du bruit de fond.
НАР	En l'absence de données locales, les valeurs de référence qui seront utilisées sont issues de celles établies par l'ATSDR (Toxicological profile for PAHs, 1995 et 2005) et de celles des fiches toxicologiques de l'INERIS pour des sols urbains ou agricoles.
Autres composés	Pour les autres composés, en l'absence de valeurs caractérisant le bruit de fond, un simple constat de présence ou d'absence a été réalisé en référence à des teneurs supérieures ou inférieures aux limites de quantification du laboratoire.

Gestion des déblais

Ces valeurs guides pourraient être utilisées dans le cadre de l'excavation et du traitement hors site des zones source de pollution. A titre indicatif, les concentrations sur le sol brut ont été comparées :

- aux critères d'acceptation définis dans l'arrêté du 12 décembre 2014 relatif aux déchets inertes;
- à la Décision du Conseil du 19 décembre 2002 « établissant des critères et des procédures d'admission des déchets dans les décharges, conformément à l'article 16 et à l'annexe II de la directive 1999/31/CE »;
- aux valeurs couramment utilisées par les exploitants d'installations de stockage de déchets. Il s'agit ici de données issues de notre expérience et de notre connaissance du marché local¹.

5.7 Résultats et interprétation des analyses sur les sols

Les résultats d'analyse sont synthétisés dans les Tableau 7 à Tableau 12.

Les bordereaux des analyses réalisées dans le cadre de ce diagnostic sont présentés en Annexe 2.

Pour chaque échantillon, la profondeur, la couche lithologique prélevée ainsi que la valeur PID mesurée ont été reportées dans le tableau.

¹ Rappelons que ces critères n'ont pas de valeur réglementaire mais l'acceptation des terres dans un centre de stockage de déchets dépend de l'accord de l'exploitant, dernier décisionnaire quant à l'acceptation des terres au regard de ses arrêtés préfectoraux et de sa stratégie pour l'exploitation de son installation.

Tableau 7 : Résultats d'analyses sur sol brut des sondages de sol

					Localisation Parking extérieur						Cuves enterrées zone poids-lourds							
			T		Sondage	BGP1	BGP2	BGP3	BGP4	BGP5	BGP5	BGP5	BGP6	BGP6	BGP6			
					Profondeur (m)	(0-1m)	(1-2m)	(0-1m)	(0-1m)	(0-1m)	(2-3m)	(4-5m)	(0-1m)	(1-2m)	(4-5m)			
						Sable limono-	Sable limono-	Agiles et galets /	Sable limono-	Sable graveleux /	Sable graveleux /	Sable graveleux /	Sable graveleux /	Sable limono-	Sable graveleux /			
		Bruit de fond		valeurs limites	Lithologie	graveleux / Ocre	graveleux / Ocre	Grise à verte	graveleux / Beige à ocre	Beige	Beige	Marron foncé	Beige	graveleux / Beige	Beige			
		(b)	ISDI*	desISDI+	Indices organoleptiques	-	-	-	-	-	-	-	Odeur d'hydrocarbures	-	-			
					PID (ppm V)	0	0	0	0	0	0	0	30.2	0.2	0			
ANALYSES SUR SOL BRUT					***************************************													
Matière sèche COT	%		-	-		89.3	87.4	88.6	88.5	89.2	93.4	95	85.4	89.4	93.3			
COT Carbone Organique Total (a) Métaux et métalloïdes	mg/kg Ms	-	30 000	30 000		2 000	<1000	<1000	<1000	<1000	-	-	<1000	-	-			
Arsenic (As)	mg/kg Ms	25				6.3	9.5	19	7.6	3.7	2.4	4.8	7.7	3.6	2.7			
Cadmium (Cd) Chrome (Cr)	mg/kg Ms mg/kg Ms	0.45 90	Résultats de lixiviation	Résultats de lixiviation		<0,1 21	<0,1 37	<0,1 29	<0,1 36	<0,1 27	<0,1 41	<0,1 26	<0,1 45	<0,1 29	<0,1 22			
Cuivre (Cu)	mg/kg Ms	20	conformes aux seuils définis pour les	conformes aux seuils définis pour les déchets		9.2	29	22	18	15	14	17	18	14	11			
Mercure (Hg)	mg/kg Ms	0.1	déchets inertes dans	inertes dans l'arrêté du		<0,05	<0,05	<0,05	0.07	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05			
Nickel (Ni) Plomb (Pb)	mg/kg Ms mg/kg Ms	60 50	l'arrêté du 12/12/2014	12/12/2014		12 15	39 17	42 15	25 18	19 9.3	26 8	25 7	31 13	20 9.9	18 8.1			
Zinc (Zn)	mg/кg мs mg/kg Ms	100	1			34	43	15 54	18 53	9.3	28	21	46	30	23			
Indice hydrocarbure C10-C40																		
Fraction C10-C12	mg/kg Ms	LQ	-	-		<4,0	<4,0	<4,0	<4,0	<4,0	<4,0	<4,0	17.9	<4,0	<4,0			
Fraction C12-C16 Fraction C16-C20	mg/kg Ms mg/kg Ms	LQ LQ	-	-		<4,0 4.4	<4,0 <2,0	<4,0 <2,0	<4,0 9.3	<4,0 2.9	<4,0 <2,0	<4,0 <2,0	76.9 60.3	<4,0 3.1	<4,0 <2.0			
Fraction C16-C20 Fraction C20-C24	mg/кg мs mg/kg Ms	LQ LQ	-	-		3.8	<2,0	<2,0	9.3	3.9	<2,0	<2,0	23.4	3.1 <2,0	<2,0			
Fraction C24-C28	mg/kg Ms	LQ	-	-		3.2	<2,0	<2,0	15	5.2	<2,0	<2,0	<2,0	<2,0	<2,0			
Fraction C28-C32	mg/kg Ms	LQ	-	-		3.7	<2,0	<2,0	14	4.1	<2,0	<2,0	<2,0	<2,0	<2,0			
Fraction C32-C36 Fraction C36-C40	mg/kg Ms mg/kg Ms	LQ LQ	-	-		3.7 2.6	<2,0 <2.0	<2,0 <2.0	10.1 6	3.9 2.5	<2,0 <2.0	2.2 <2.0	<2,0 <2.0	<2,0 <2.0	<2,0 <2.0			
Somme des hydrocarbures C10-C40	mg/kg Ms	LQ	500	500		21.4	<lq< th=""><th><</th><th>68.4</th><th>22.5</th><th><lq< th=""><th>2.2</th><th>178.5</th><th>3.1</th><th><lq< th=""></lq<></th></lq<></th></lq<>	<	68.4	22.5	<lq< th=""><th>2.2</th><th>178.5</th><th>3.1</th><th><lq< th=""></lq<></th></lq<>	2.2	178.5	3.1	<lq< th=""></lq<>			
HAP																		
Naphtalène	mg/kg Ms	0.15	-	-		<0.050 <0.050	<0,050 <0,050	<0,050 <0,050	<0,050 <0.050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0.050	<0,050 <0.050			
Acénaphtylène Acénaphtène	mg/kg Ms mg/kg Ms	-	-	-		0.13	<0.050	<0.050	0.24	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050			
Fluorène	mg/kg Ms	-	-	-		0.18	<0,050	<0,050	0.28	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050			
Phénanthrène	mg/kg Ms	-	-	-		0.57	<0,050	<0,050	1.2	0.059	<0,050	<0,050	<0,050	<0,050	<0,050			
Anthracène Fluoranthène	mg/kg Ms mg/kg Ms	-	-	-		0.18 0.45	<0,050	<0,050	0.49	<0,050 <0.050	<0,050	<0,050 <0,050	<0,050	<0,050 <0,050	<0,050 <0.050			
Pyrène	mg/kg Ms	-	-	-		0.37	<0,050 <0,050	<0,050 <0,050	2.6	0.066	<0,050 <0,050	<0,050	<0,050 <0,050	<0,050	<0,050			
Benzo(a)anthracène	mg/kg Ms	-	-	-		0.2	<0,050	<0,050	1	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050			
Chrysène	mg/kg Ms	-	-	-		0.17	<0,050	<0,050	0.82	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050			
Benzo(b)fluoranthène Benzo(k)fluoranthène	mg/kg Ms mg/kg Ms	-	-	-		0.16 0.085	<0,050 <0,050	<0,050 <0.050	1.4 0.64	<0,050 <0.050	<0,050 <0.050	<0,050 <0.050	<0,050 <0,050	<0,050 <0.050	<0,050 <0.050			
Benzo(a)pyrène	mg/kg Ms	-	-	-		0.16	<0,050	<0,050	1.4	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050			
Dibenzo(a,h)anthracène	mg/kg Ms	-	-	-		<0,050	<0,050	<0,050	0.18	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050			
Benzo(g,h,i)pérylène	mg/kg Ms	-	-	-		0.095	<0,050	<0,050	0.89 0.82	<0,050	<0,050	<0,050	<0,050	0.083 <0.050	0.063 <0.050			
Indéno(1,2,3-cd)pyrène Somme des HAP	mg/kg Ms mg/kg Ms	25	50	50		0.091 2.841	<0,050 <lq< th=""><th><0,050 <lq< th=""><th>13.96</th><th>0.125</th><th><0,050 <lq< th=""><th><0,050 <lq< th=""><th><0,050 <lq< th=""><th>0.083</th><th>0.063</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<0,050 <lq< th=""><th>13.96</th><th>0.125</th><th><0,050 <lq< th=""><th><0,050 <lq< th=""><th><0,050 <lq< th=""><th>0.083</th><th>0.063</th></lq<></th></lq<></th></lq<></th></lq<>	13.96	0.125	<0,050 <lq< th=""><th><0,050 <lq< th=""><th><0,050 <lq< th=""><th>0.083</th><th>0.063</th></lq<></th></lq<></th></lq<>	<0,050 <lq< th=""><th><0,050 <lq< th=""><th>0.083</th><th>0.063</th></lq<></th></lq<>	<0,050 <lq< th=""><th>0.083</th><th>0.063</th></lq<>	0.083	0.063			
BTEX									10.00					5.000	0.000			
Benzène	mg/kg Ms	LQ	-	-		<0,050	<0,050	<0,050	<0,050	<0,050	<0,05	<0,05	<0,050	<0,05	<0,05			
Toluène Ethylbenzène	mg/kg Ms mg/kg Ms	LQ LQ	-	-		<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,05 <0,05	<0,05 <0.05	<0,050 <0,050	<0,05 <0,05	<0,05 <0,05			
m,p-Xylène	mg/kg Ms	LQ	-	-		<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10			
o-Xylène	mg/kg Ms	LQ	-	-		<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050			
Somme des BTEX PCB	mg/kg Ms	LQ	6	6		<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>			
PCB (28)	mg/kg Ms	LQ		-		<0,001	<0,001	<0,001	<0,001	<0,001	-		<0,001	-	-			
PCB (52)	mg/kg Ms	LQ	-	-		<0,001	<0,001	<0,001	<0,001	<0,001	-	-	<0,001	-	-			
PCB (101)	mg/kg Ms	LQ		-		<0,001	<0,001	<0,001	<0,001	0.003	-	-	<0,001	-	-			
PCB (118) PCB (138)	mg/kg Ms mg/kg Ms	LQ LQ	-	-		<0,001 <0,001	<0,001 <0,001	<0,001 <0.001	<0,001 <0.001	0.001	-	-	<0,001 <0,001	-	-			
PCB (153)	mg/kg Ms	LQ	-	-		<0,001	<0,001	<0,001	<0,001	0.009	-	-	<0,001	-	-			
PCB (180)	mg/kg Ms	LQ	-	-		<0,001	<0,001	<0,001	<0,001	0.008	-	-	<0,001	-	-			
Somme des PCB COHV	mg/kg Ms	LQ	1	1		<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>0.029</th><th></th><th></th><th><lq< th=""><th></th><th></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>0.029</th><th></th><th></th><th><lq< th=""><th></th><th></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>0.029</th><th></th><th></th><th><lq< th=""><th></th><th></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>0.029</th><th></th><th></th><th><lq< th=""><th></th><th></th></lq<></th></lq<>	0.029			<lq< th=""><th></th><th></th></lq<>					
Tétrachloroéthylène (PCE)	mg/kg Ms	LQ	-	-		-	-	-	-	-	-	-	-		-			
Trichloroéthylène (TCE)	mg/kg Ms	LQ	-	-		-	-	-	-	-	-	-	-	-	-			
cis-1,2-dichloroéthylène	mg/kg Ms	LQ	-	-		-	-	-	-	-	-	-	-	-	-			
trans-1,2-dichloroéthylène 1,1-dichloroéthylène	mg/kg Ms mg/kg Ms	LQ LQ	-	-		-	-	-	-	-	-	-	-	-	-			
Chlorure de Vinyle	mg/kg Ms	LQ	-	-		-	-	-	-	-	-	-	-	-	-			
1,1,2-trichloroéthane	mg/kg Ms	LQ	-	-		-	-	-	-	-	-	-	-	-	-			
1,1,1-trichloroéthane	mg/kg Ms	LQ	-	-		-	-	-	-	-	-	-	-	-	-			
1,2-dichloroéthane 1,1-dichloroéthane	mg/kg Ms mg/kg Ms	LQ LQ	-	-		-	-	-	-	-	-	-	-	-	-			
Tétrachlorométhane (tétrachlorure de carbone)	mg/kg Ms	LQ	-	-		-	-	-	-	-	-	-	-	-	-			
Trichlorométhane (chloroforme)	mg/kg Ms	LQ	-	-		-	-	-	-	-	-	-	-	-	-			
Dichlorométhane Somme des COHV	mg/kg Ms	LQ LQ	2 (e)	- 2		-	-	-	-	-	-	-	-	-	-			
* Valeurs limites indicatives issues des textes européens	mg/kg Ms s. des arrêtés ministé				//////////////////////////////////////	-	-	-	-	-	-	-	-	-	-			
and the second s			quo		-													

⁽a) [Pour l'acceptation en ISDI], une valeur limite plus élevée peut être admise, à condition que la valeur limite de 500 mg/kg de matière sèche soit respectée pour le carbone organique total sur éluat, soit au pH du sol, soit pour un pH situé entre 7,5 et 8,0.

concentration supérieure aux valeurs limites des ISDI et inférieure aux limites ISDI-(e) valeur non réglementaire mais parfois appliquée par les gestionnaires d'ISDI

⁽b) Valeurs en gras : source = Teneurs totales en éléments traces métalliques dans les sols, Denis BAIZE, INRA. En italique : source = ATSDR

⁽c) Si le déchet ne respecte pas au moins une des valeurs fixées pour le chlorure, le sulfate ou la fraction soluble, le déchet peut être encore jugé conforme aux critères d'admission [en ISDI] s'il respecte soit les valeurs associées au chlorure et au sulfate, soit celle associée à la fraction soluble.

LQ: Limite de quantification du laboratoire

concentration supérieure au bruit de fond et inférieure aux limites ISDI

Tableau 8 : Résultats d'analyses sur sol brut des sondages de sol

Localisation Aire lavage poids-Séparateur hyd	drocarbure	Cuve enterrée groupe électrogène				
Sondage BGP7 BGP8	BGP8	BGP9	BGP9	BGP10	BGP10	BGP10
Profondeur (m) (0-1m) (1-2m)	(3-4m)	(1-2m)	(2.2-3.2m)	(0-1m)	(1-2m)	(4-5m)
Sable limono-		Sable graveleux et		Sable limono-		
Lithologie Sable graveleux / graveleux / Marron	Sable limono- graveleux / Beige	galets / Orange à	Sable graveleux et galets / Beige	graveleux / Marron	Sable graveleux et galets / Beige	Sable limono- graveleux / Beige
Bruit de fond Valeurs limite des valeurs limites foncé	graveleux / beige	ocre	galets / beige	foncé	galets / Beige	graveleux / Beige
(b) ISDI* desISDI+						
Indices - Traces noirátres		_		_	_	_
organoleptiques						
PID (ppmV) 0 0	0	0	0	0	0	0
ANALYSES SUR SOL BRUT						
Matière sèche % ((((((((((((((((((((((((((87.3	87.1	89.1	83.6	87.2	95.9
COT mg/kg Ms - 30 000 30 000 1000 1 200	-	<1000	-	21 000	-	-
Con Carbonie Organique Total (a) 1200 Métaux et métalloïdes - 30 000 30 000 Million (b) 1200 Métaux et métalloïdes	-	<1000	-	21 000	-	
Arsenic (As) mg/kg Ms 25 (((((((((((((((((((((((((((((((((((3.2	9.3	5.3	17	7.7	3.5
Cadmium (Cd) mg/kg Ms 0.45 Résultats de lixiviation Résultats de lixiviation	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1
Chrome (Cr) mg/kg Ms 90 Cuivre (Cu) mg/kg Ms 20 **Conformes aux seuils conformes aux seu	36 19	35 23	25 13	28 11	39 13	23 8
Mercure (Hn) definis pour les dechets definis pour les dechets	<0.05	<0.05	<0.05	0.07	<0.05	<0.05
Nickel (Ni) mg/kg Ms 60 cerners inertees dans inertees dans arretee ut	23	35	26	18	27	18
Homb (Hb) mg/kg Ms 50 11 14	9.2	14	7.1	71	15	7.9
Zinc (Zn) mg/kg Ms 100 34 31 Indice hydrocarbure C10-C40	28	39	27	36	35	23
Indice hydrocarbure C10-C40	4.8	<4,0	<4.0	<4.0	<4.0	<4.0
Fraction C12-C16 mg/kg Ms LQ	7	<4,0	<4,0	<4,0	<4,0	<4,0
Fraction C16-C20 mg/kg Ms LQ /////////// 2.6 <2,0	6.3	<2,0	<2,0	2.5	<2,0	<2,0
Fraction C20-C24 mg/kg Ms LQ 2.4 < 2.0	5.5	4.1	<2,0	<2,0	<2,0	<2,0
Fraction C24-C28 mg/kg Ms LQ - <td>5 4.6</td> <td>2.8 <2,0</td> <td><2,0 <2,0</td> <td>4.9 7.8</td> <td><2,0 <2,0</td> <td><2,0 <2,0</td>	5 4.6	2.8 <2,0	<2,0 <2,0	4.9 7.8	<2,0 <2,0	<2,0 <2,0
Fraction 232-C36 mg/kg Ms LQ 2.9 < .0	4.2	<2,0	<2.0	3.7	<2,0	<2,0
Fraction C36-C40 mg/kg Ms LQ	2.3	<2,0	<2,0	<2,0	<2,0	<2,0
Somme des hydrocarbures C10-C40 mg/kg Ms LQ 500 500 12.7 < □	39.7	6.9	<lq< th=""><th>18.9</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	18.9	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
HAP	0.050	0.050	0.050	0.050	0.050	0.050
Naphtalène mg/kg Ms 0.15 -	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050
Acénaphiene mg/kg Ms	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Fluorène mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050
Phénanthrène mg/kg Ms -	0.11	<0,050	<0,050	<0,050	<0,050	<0,050
Anthracène mg/kg Ms -	<0,050 0.19	<0,050	<0,050	<0,050	<0,050 <0,050	<0,050
Fluoranthène mg/kg Ms	0.19	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050	<0,050 <0,050
Benzo(a)anthracène	0.069	<0,050	<0,050	<0,050	<0,050	<0,050
Chrysène mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050
Benzo(b)fluoranthène mg/kg Ms	0.06	<0,050	<0,050	<0,050	<0,050	<0,050
Benzo(k)fluoranthène mg/kg Ms -<	<0,050 0.076	<0,050 <0.050	<0,050 <0,050	<0,050 <0.050	<0,050 <0,050	<0,050 <0,050
Disenzo(a,h)anthracène	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050
Benzo(g,h,i)pérylène mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050
Indéno(1,2,3-cd)pyrène mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050
Somme des HAP mg/kg Ms 25 50 50 4Q 4Q 4Q BTEX <td< th=""><th>0.665</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></td<>	0.665	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Benzène mg/kg Ms LQ	<0.05	<0.050	<0.05	<0,050	<0.05	<0.05
Toluène mg/kg Ms LQ	<0,05	<0,050	<0,05	<0,050	<0,05	<0,05
Ethylbenzène mg/kg Ms LQ -	<0,05	<0,050	<0,05	<0,050	<0,05	<0,05
mp-Xylène mg/kg Ms LQ	<0,10 <0,050	<0,10 <0,050	<0,10 <0,050	<0,10 <0,050	<0,10 <0,050	<0,10 <0,050
0-Xyenie 11grig ws LQ	<0,050 <lq< td=""><td><0,050 <lq< td=""><td><0,050 <lq< td=""><td><0,050 <lq< td=""><td><0,050 <lq< td=""><td><0,050 <lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<0,050 <lq< td=""><td><0,050 <lq< td=""><td><0,050 <lq< td=""><td><0,050 <lq< td=""><td><0,050 <lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<0,050 <lq< td=""><td><0,050 <lq< td=""><td><0,050 <lq< td=""><td><0,050 <lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<0,050 <lq< td=""><td><0,050 <lq< td=""><td><0,050 <lq< td=""></lq<></td></lq<></td></lq<>	<0,050 <lq< td=""><td><0,050 <lq< td=""></lq<></td></lq<>	<0,050 <lq< td=""></lq<>
PCB	-					
FCB (28) mg/kg Ms LQ	-	<0,001	-	<0,001	-	-
PCB (52) mg/kg Ms LQ	-	<0,001 <0.001	-	<0,001 <0.001	-	-
PCB (101) mg/ng Ms LQ	-	<0,001	-	<0,001	-	-
PCB (138) mg/kg Ms LQ	-	<0,001	-	<0,001	-	-
PCB (153) mg/kg Ms LQ	-	<0,001	-	<0,001	-	-
PCB (180) mg/kg Ms LQ	-	<0,001	-	<0,001	-	-
Somme des PCB mg/kg Ms LQ 1 1 ✓ LQ ✓ LQ COHV	-	<lq< th=""><th>-</th><th><lq< th=""><th>-</th><th>-</th></lq<></th></lq<>	-	<lq< th=""><th>-</th><th>-</th></lq<>	-	-
Certa (PCE) mg/kg Ms LQ	-	-	-	-	-	-
Trichloroéthylène (TCE) mg/kg Ms LQ	-	-	-	-	-	-
cis-1,2-dichloroéthylène mg/kg Ms LQ	-	-	-	-	-	-
trans-1,2-dichloroéthylène mg/kg Ms LQ - - - - 1,1-dichloroéthylène mg/kg Ms LQ - - - - -	-	-	-	-	-	-
1,1-dichloroéthyléne mg/kg Ms LQ	-	-	-	-	-	-
1,1,2-trichloroéthane mg/kg Ms LQ	-	-	-	-	-	-
1,1,1-trichloroéthane mg/kg Ms LQ	-	-	-	-	-	-
1,2-dichloroéithane mg/kg Ms LQ	-	-	-	-	-	-
1,1-dichloroéthane mg/kg Ms LQ - - - - Tétrachlorométhane (tétrachlorure de carbone) mg/kg Ms LQ - - - - - -	-	-	-	-	-	-
Terradinorometrane (terradinorometrane (terrad					-	-
	-	-		-	-	
Dichlorométhane	-	-	-	-	-	-

^{*} Valeurs limites indicatives issues des textes européens, des arrêtés ministériel et des critères communément appliqués par les centres de stockage

⁽a) [Pour l'acceptation en ISDI], une valeur limite plus élevée peut être admise, à condition que la valeur limite de 500 mg/kg de matière sèche soit respectée pour le carbone organique total sur éluat, soit au pH du sol, soit pour un pH situé entre 7,5 et 8,0.

⁽b) Valeurs en gras : source = Teneurs totales en éléments traces métalliques dans les sols, Denis BAIZE, INRA. En italique : source = ATSDR

⁽c) Si le déchet ne respecte pas au moins une des valeurs fixées pour le chlorure, le sulfate ou la fraction soluble, le déchet peut être encore jugé conforme aux critères d'admission [en ISDI] s'il respecte soit les valeurs associées au chlorure et au sulfate, soit celle associée à la fraction soluble.

LQ: Limite de quantification du laboratoire

concentration supérieure au bruit de fond et inférieure aux limites ISDI

concentration supérieure aux valeurs limites des ISDI et inférieure aux limites ISDI+ (e) valeur non réglementaire mais parfois appliquée par les gestionnaires d'ISDI

Tableau 9 : Résultats d'analyses sur sol brut des sondages de sol

					Lasslination	Aire de lavage at	elier d'entretien /	Aire de lavage	e / séparateur				
					Localisation	mainte	nance	hydroc	arbure		Parking / quai o		50510
					Sondage Profondeur (m)	(0-1m)	BGP11 (1-2m)	BGP16 (0-1m)	BGP16 (2-3m)	BGP14 (0-1m)	BGP15 (0-1m)	BGP17 (0-1m)	(0-1m)
					Froionaeur (iii)	(0-111)	(1-211)				(0-111)	(0-1111)	(0-111)
		Bruit de fond	Valeurs limite des	valeurs limites	Lithologie	Sable limono- graveleux / Marron	Sable limono- graveleux / Beige	Sable graveleux et galets / Beige à marron clair	Sable limono- graveleux / Ocre à marron foncé	Sable limono- graveleux / Beige à ocre	Argile / Orange à ocre	Sable limono- graveleux / Ocre	Traces noirâtres
		(b)	ISDI*	desISDI+	Indices organoleptiques	-	-	-	-	-	-	-	Traces noirâtres
					PID (ppmV)	0	0	0	0	0	0	0	0
ANALYSES SUR SOL BRUT													
Matière sèche	%	-	-	-		84.4	80.9	93.8	89.1	91.2	80.1	85.9	89.6
COT				****	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			1000		<1000	4.000	1000	
COT Carbone Organique Total (a) Métaux et métalloïdes	mg/kg Ms	-	30 000	30 000		9 600	-	<1000	-	<1000	1 000	<1000	9 300
Arsenic (As)	mg/kg Ms	25				18	12	9.8	23	3.8	6.4	9	13
Cadmium (Cd)	mg/kg Ms	0.45 90	Résultats de lixiviation	Résultats de lixiviation		<0,1 25	<0,1 43	<0,1 16	<0,1 46	<0,1 29	<0,1 51	<0,1 35	<0,1 31
Chrome (Cr) Cuivre (Cu)	mg/kg Ms mg/kg Ms	20	conformes aux seuils	conformes aux seuils		8.8	12	6.1	23	16	14	14	8.5
Mercure (Hg)	mg/kg Ms	0.1	définis pour les déchets inertes dans	définis pour les déchets inertes dans l'arrêté du		<0,05	0.06	<0,05	0.05	<0,05	0.08	<0,05	0.05
Nickel (Ni) Plomb (Pb)	mg/kg Ms	60 50	l'arrêté du 12/12/2014	12/12/2014		14 27	44 10	12 9.1	38	24 11	26 13	21 10	12 17
Zinc (Zn)	mg/kg Ms mg/kg Ms	100				31	44	20	16 37	27	47	26	18
Indice hydrocarbure C10-C40													
Fraction C10-C12 Fraction C12-C16	mg/kg Ms mg/kg Ms	LQ LQ	-	-		<4,0	<4,0 <4.0	<4,0	<4,0 <4,0	<4,0	<4,0	<4,0	<4,0
Fraction C12-C16 Fraction C16-C20	mg/kg Ms	LQ	-	-		<4,0 4.5	<4,U 2.6	<4,0 <2,0	<4,0	<4,0 <2,0	<4,0 <2,0	<4,0 <2,0	<4,0 <2,0
Fraction C20-C24	mg/kg Ms	LQ	-	-		7.6	<2,0	<2,0	<2,0	<2,0	2.5	<2,0	2.6
Fraction C24-C28 Fraction C28-C32	mg/kg Ms	LQ LQ	-	-		8.3 11	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0 <2,0	3 4.1
Fraction C28-C32 Fraction C32-C36	mg/kg Ms mg/kg Ms	LQ	-	-		5.9	<2,0	<2,0	2.6	2.7	2.6	<2,0	3.1
Fraction C36-C40	mg/kg Ms	LQ	-	-		<2,0	<2,0	<2,0	2.9	2.9	2.7	<2,0	<2,0
Somme des hydrocarbures C10-C40 HAP	mg/kg Ms	LQ	500	500		37.3	2.6	<lq< td=""><td>5.5</td><td>5.6</td><td>7.8</td><td><lq< td=""><td>12.8</td></lq<></td></lq<>	5.5	5.6	7.8	<lq< td=""><td>12.8</td></lq<>	12.8
Naphtalène	mg/kg Ms	0.15	-	-		<0,050	<0,050	<0,050	<0,050	<0.050	<0,050	<0,050	<0,050
Acénaphtylène	mg/kg Ms	-	-	-		<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050
Acénaphtène	mg/kg Ms	-	-	-		<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050
Fluorène Phénanthrène	mg/kg Ms mg/kg Ms	-	-	-		<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	0.08 0.35
Anthracène	mg/kg Ms	-	-	-		<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	0.12
Fluoranthène	mg/kg Ms	-	-	-		<0,050	<0,050	<0,050	0.062	<0,050	<0,050	<0,050	0.48
Pyrène Benzo(a)anthracène	mg/kg Ms mg/kg Ms	-	-	-		<0,050 <0.050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0.050	<0,050 <0,050	<0,050 <0,050	0.45 0.2
Chrysène	mg/kg Ms	-	-	-		<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	0.17
Benzo(b)fluoranthène	mg/kg Ms	-	-	-		<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	0.19
Benzo(k)fluoranthène Benzo(a)pyrène	mg/kg Ms mg/kg Ms	-	-	-		<0,050 <0.050	<0,050 <0.050	<0,050 <0.050	<0,050 <0.050	<0,050 <0.050	<0,050 <0.050	<0,050 <0.050	0.11 0.2
Dibenzo(a,h)anthracène	mg/kg Ms	-	-	-		<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050
Benzo(g,h,i)pérylène	mg/kg Ms	-	-	-		<0,050 <0.050	<0,050	<0,050	<0,050 <0.050	<0,050	<0,050	<0,050 <0.050	0.12 0.12
Indéno(1,2,3-cd)pyrène Somme des HAP	mg/kg Ms mg/kg Ms	25	50	50		<0,050 <lq< td=""><td><0,050 <lq< td=""><td><0,050 <lq< td=""><td>0.062</td><td><0,050 <lq< td=""><td><0,050 <lq< td=""><td><0,050 <lq< td=""><td>2.59</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<0,050 <lq< td=""><td><0,050 <lq< td=""><td>0.062</td><td><0,050 <lq< td=""><td><0,050 <lq< td=""><td><0,050 <lq< td=""><td>2.59</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<0,050 <lq< td=""><td>0.062</td><td><0,050 <lq< td=""><td><0,050 <lq< td=""><td><0,050 <lq< td=""><td>2.59</td></lq<></td></lq<></td></lq<></td></lq<>	0.062	<0,050 <lq< td=""><td><0,050 <lq< td=""><td><0,050 <lq< td=""><td>2.59</td></lq<></td></lq<></td></lq<>	<0,050 <lq< td=""><td><0,050 <lq< td=""><td>2.59</td></lq<></td></lq<>	<0,050 <lq< td=""><td>2.59</td></lq<>	2.59
BTEX													
Benzène Toluène	mg/kg Ms	LQ LO	-	-		<0,050	<0.05	<0,050	<0,05	<0,050	<0,050	<0,050	<0,050
I oluene Ethylbenzène	mg/kg Ms mg/kg Ms	LQ LQ	-	-		<0,050 <0,050	<0,05 <0,05	<0,050 <0,050	<0,05 <0,05	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050
m,p-Xylène	mg/kg Ms	LQ	-	-		<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10
o-Xylène Somme des BTEX	mg/kg Ms	LQ LQ	- 6	- 6		<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050
PCB	mg/kg Ms	LQ	U	U		<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
PCB (28)	mg/kg Ms	LQ	-	-		<0,001	-	<0,001	-	<0,001	<0,001	<0,001	<0,001
PCB (52) PCB (101)	mg/kg Ms mg/kg Ms	LQ LQ	-	-		<0,001 <0,001	-	<0,001 <0,001	-	<0,001 <0,001	<0,001 <0,001	<0,001 <0,001	<0,001 <0,001
PCB (101)	mg/kg Ms	LQ	-	-		<0,001	-	<0,001	-	<0,001	<0,001	<0,001	<0,001
PCB (138)	mg/kg Ms	LQ	-	-		<0,001	-	<0,001	-	<0,001	<0,001	<0,001	<0,001
PCB (153) PCB (180)	mg/kg Ms mg/kg Ms	LQ LQ	-	-		<0,001 <0.001	-	<0,001 <0.001	-	<0,001 <0.001	<0,001 <0.001	<0,001 <0.001	<0,001 <0.001
Somme des PCB	mg/kg Ms	LQ	1	1		<0,001 <lq< td=""><td>-</td><td><0,001 <lq< td=""><td>-</td><td><0,001 <lq< td=""><td><0,001 <lq< td=""><td><0,001 <lq< td=""><td><0,001 <lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	-	<0,001 <lq< td=""><td>-</td><td><0,001 <lq< td=""><td><0,001 <lq< td=""><td><0,001 <lq< td=""><td><0,001 <lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	-	<0,001 <lq< td=""><td><0,001 <lq< td=""><td><0,001 <lq< td=""><td><0,001 <lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<0,001 <lq< td=""><td><0,001 <lq< td=""><td><0,001 <lq< td=""></lq<></td></lq<></td></lq<>	<0,001 <lq< td=""><td><0,001 <lq< td=""></lq<></td></lq<>	<0,001 <lq< td=""></lq<>
COHV													
Tétrachloroéthylène (PCE) Trichloroéthylène (TCE)	mg/kg Ms mg/kg Ms	LQ LQ	-	-		<0,05 <0.05	<0,05 <0,05	-	-	-	-	-	-
cis-1,2-dichloroéthylène	mg/kg Ms	LQ	-	-		<0,05	<0,05	-	-	-	-	-	-
trans-1,2-dichloroéthylène	mg/kg Ms	LQ	-	-		<0,025	<0,025	-	-	-	-	-	-
1,1-dichloroéthylène Chlorure de Vinyle	mg/kg Ms mg/kg Ms	LQ LQ	-	-		<0,10 <0,02	<0,10 <0,02	-	-	-	-	-	-
1,1,2-trichloroéthane	mg/kg Ms	LQ	-	-		<0,02	<0,02	-	-	-	-	-	-
1,1,1-trichloroéthane	mg/kg Ms	LQ	-	-		<0,05	<0,05	-	-	-	-	-	-
1,2-dichloroéthane 1,1-dichloroéthane	mg/kg Ms mg/kg Ms	LQ LQ	-	-		<0,05	<0,05	-	-	-	-	-	-
Tétrachlorométhane (tétrachlorure de carbone)	mg/kg Ms	LQ	-	-		<0,10 <0,05	<0,10 <0,05	-	-	-	-	-	-
Trichlorométhane (chloroforme)	mg/kg Ms	LQ	-	-		<0,05	<0,05	-	-	-	-	-	-
Dichlorométhane	mg/kg Ms	LQ	2 (0)	-		<0,05	<0,05	-	-	-	-	-	-
Somme des COHV * Valeurs limites indicatives issues des textes européens.	mg/kg Ms	LQ árial at das critàras	2 (e)	e nar les centres de stock	200	<lq< td=""><td><lq< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></lq<></td></lq<>	<lq< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></lq<>	-	-	-	-	-	-

^{*} Valeurs limites indicatives issues des textes européens, des arrêtés ministériel et des critères communément appliqués par les centres de stockage

⁽a) [Pour l'acceptation en ISDI], une valeur limite plus élevée peut être admise, à condition que la valeur limite de 500 mg/kg de matière sèche soit respectée pour le carbone organique total sur éluat, soit au pH du sol, soit pour un pH situé entre 7,5 et 8,0.

⁽b) Valeurs en gras : source = Teneurs totales en éléments traces métalliques dans les sols, Denis BAIZE, INRA. En italique : source = ATSDR

⁽c) Si le déchet ne respecte pas au moins une des valeurs fixées pour le chlorure, le sulfate ou la fraction soluble, le déchet peut être encore jugé conforme aux critères (c) si le decret te ne fespecte pas au moins une des vaieurs rixees pour le cniorure, le suirate ou la fraction soluble, le decnet pe d'admission [en ISD] si l'respecte soit les valeurs associées au chlorure et au sulfate, soit celle associée à la fraction soluble.

LO : Limite de quantification du laboratoire

concentration supérieure au valeurs limites des ISDI et inférieure aux limites ISDI+

(e) valeur non réglementaire mais parfois appliquée par les gestionnaires d'ISDI

Tableau 10 : Résultats d'analyses sur éluats des sondages de sol

					Localisation		Parking 6	extérieur		Cuves enterrées zone poids-lourds						
					Sondage	BGP1	BGP2	BGP3	BGP4	BGP5	BGP5	BGP5	BGP6	BGP6	BGP6	
					Profondeur (m)	(0-1m)	(1-2m)	(0-1m)	(0-1m)	(0-1m)	(2-3m)	(4-5m)	(0-1m)	(1-2m)	(4-5m)	
			fond Valeurs limite des N	valeurs limites	Lithologie	Sable limono- graveleux / Ocre	Sable limono- graveleux / Ocre	Agiles et galets / Grise à verte	Sable limono- graveleux / Beige à ocre	Sable graveleux / Beige	Sable graveleux / Beige	Sable graveleux / Marron foncé	Sable graveleux / Beige	Sable limono- graveleux / Beige	Sable graveleux / Beige	
		(b)		desISDI+	Indices organoleptiques	-	-	-	-	-	-	-	Odeur d'hydrocarbures	-	-	
					PID (ppm V)	0	0	0	0	0	0	0	30.2	0.2	0	
ANALYSES SUR ELUAT																
Paramètres généraux																
pH	-	-	-	-		8.4	7.2	7.9	10.3	8.4	-	-	9	-	-	
Conductivité corrigée à 25 °C	μS/cm	-	-	-		190	16.8	65	200	140	-	-	190	-	-	
Fraction soluble (c)	mg/kg M.S.	-	4000	12000		<1000	<1000	<1000	<1000	1000	-	-	<1000	-	-	
Carbone organique total	mg/kg M.S.	-	500	500		40	<10	<10	21	14	-	-	25	-	-	
Indice phénol	mg/kg M.S.	-	1	3		<0,10	<0,10	<0,10	<0,10	<0,10	-	-	<0,10	-	-	
Anions																
Fluorures	mg/kg M.S.	-	10	30		8	<1,0	8	20	10	-	-	19	-	-	
Chlorures (c)	mg/kg M.S.	-	800	2400		27	23	8	19	38	-	-	58	-	-	
Sulfates (c)	mg/kg M.S.	-	1000	3000		410	<50	<50	470	93	-	-	400	-	-	
Métaux et métalloïdes																
Antimoine	mg/kg M.S.	-	0.06	0.18		<0,05	<0,05	<0,05	<0,05	<0,05	-	-	<0,05	-	-	
Arsenic	mg/kg M.S.	-	0.5	1.5		<0,05	<0,05	<0,05	0.12	<0,05	-	-	<0,05	-	-	
Baryum	mg/kg M.S.	-	20	60		0.15	<0,10	<0,10	<0,10	0.15	-	-	0.13	-	-	
Cadmium	mg/kg M.S.	-	0.04	0.12		<0,001	<0,001	<0,001	<0,001	<0,001	-	-	<0,001	-	-	
Chrome	mg/kg M.S.	-	0.5	1.5		<0,02	<0,02	<0,02	<0,02	<0,02	-	-	<0,02	-	-	
Cuivre	mg/kg M.S.	-	2	6		0.02	0.04	<0,02	0.02	<0,02	-	-	0.05	-	-	
Mercure	mg/kg M.S.	-	0.01	0.03		<0,0003	<0,0003	<0,0003	<0,0003	<0,0003	-	-	<0,0003	-	-	
Molybdène	mg/kg M.S.	-	0.5	1.5		0.09	<0,05	<0,05	0.12	<0,05	-	-	0.05	-	-	
Nickel	mg/kg M.S.	-	0.4	1.2		<0,05	<0,05	<0,05	<0,05	<0,05	-	-	<0,05	-	-	
Plomb	mg/kg M.S.	-	0.5	1.5		<0,05	<0,05	<0,05	<0,05	<0,05	-	-	<0,05	-	-	
Zinc	mg/kg M.S.	-	4	12		<0,02	0.11	<0,02	<0,02	<0,02	-	-	0.03	-	-	
Selenium	mg/kg M.S.	-	0.1	0.3		<0,05	<0,05	<0,05	<0,05	<0,05	-	-	<0,05	-	-	

^{*} Valeurs limites indicatives issues des textes européens, des arrêtés ministériel et des critères communément appliqués par les centres de stockage

(e) valeur non réglementaire mais parfois appliquée par les gestionnaires d'ISDI

Réf: CESICE210146 / RESICE12466-01 CLBE / PC / SOGA 26/03/2021 Page 27/37

⁽a) [Pour l'acceptation en ISDI], une valeur limite plus élevée peut être admise, à condition que la valeur limite de 500 mg/kg de matière sèche soit respectée pour le carbone organique total sur éluat, soit au pH du sol, soit pour un pH situé entre 7,5 et 8,0.

⁽b) Valeurs en gras : source = Teneurs totales en éléments traces métalliques dans les sols, Denis BAIZE, INRA. En italique : source = ATSDR

⁽c) Si le déchet ne respecte pas au moins une des valeurs fixées pour le chlorure, le sulfate ou la fraction soluble, le déchet peut être encore jugé conforme aux critères

d'admission [en ISDI] s'il respecte soit les valeurs associées au chlorure et au sulfate, soit celle associée à la fraction soluble. LQ : Limite de quantification du laboratoire

concentration supérieure au bruit de fond et inférieure aux limites ISDI

concentration supérieure aux valeurs limites des ISDI et inférieure aux limites ISDI+

Tableau 11 : Résultats d'analyses sur éluats des sondages de sol

					Localisation	Aire lavage poids	Séparateur h	nydrocarbure		Cuve en	terrée groupe élec	ctrogène	
					Sondage	BGP7	BGP8	BGP8	BGP9	BGP9	BGP10	BGP10	BGP10
					Profondeur (m)	(0-1m)	(1-2m)	(3-4m)	(1-2m)	(2.2-3.2m)	(0-1m)	(1-2m)	(4-5m)
		Bruit de fond	Valeurs limite des	valeurs limites	Lithologie	Sable graveleux / Ocre	Sable limono- graveleux / Marron foncé	Sable limono- graveleux / Beige	Sable graveleux et galets / Orange à ocre	Sable graveleux et galets / Beige	Sable limono- graveleux / Marron foncé	Sable graveleux et galets / Beige	Sable limono- graveleux / Beige
		(b)	ISDI*	desISDI+	Indices organoleptiques	-	Traces noirâtres	-	-	-	-	-	-
					PID (ppm V)	0	0	0	0	0	0	0	0
ANALYSES SUR ELUAT													
Paramètres généraux													
pH	-	-	-	-		8.4	8	-	8.4	-	7.6	-	-
Conductivité corrigée à 25 °C	μS/cm	-	-	-		100	94.7	-	80.8	-	82.5	-	-
Fraction soluble (c)	mg/kg M.S.	-	4000	12000		<1000	<1000	-	<1000	-	<1000	-	-
Carbone organique total	mg/kg M.S.	-	500	500		<10	14	-	11	-	80	-	-
Indice phénol	mg/kg M.S.	-	1	3		<0,10	<0,10	-	<0,10	-	<0,10	-	-
Anions													
Fluorures	mg/kg M.S.	-	10	30		9	5	-	7	-	1	-	-
Chlorures (c)	mg/kg M.S.	-	800	2400		25	22	-	25	-	11	-	-
Sulfates (c)	mg/kg M.S.	-	1000	3000		<50	<50	-	<50	-	<50	-	-
Métaux et métalloïdes					-								
Antimoine	mg/kg M.S.	-	0.06	0.18		<0,05	<0,05	-	<0,05	-	<0,05	-	-
Arsenic	mg/kg M.S.	-	0.5	1.5		<0,05	<0,05	-	<0,05	-	<0,05	-	-
Baryum	mg/kg M.S.	-	20	60		<0,10	<0,10	-	<0,10	-	<0,10	-	-
Cadmium	mg/kg M.S.	-	0.04	0.12		<0,001	<0,001	-	<0,001	-	<0,001	-	-
Chrome	mg/kg M.S.	-	0.5	1.5		<0,02	<0,02	-	<0,02	-	<0,02	-	-
Cuivre	mg/kg M.S.	-	2	6		<0,02	<0,02	-	<0,02	-	0.09	-	-
Mercure	mg/kg M.S.	-	0.01	0.03		<0,0003	<0,0003	-	<0,0003	-	<0,0003	-	-
Molybdène	mg/kg M.S.	-	0.5	1.5		<0,05	<0,05	-	<0,05	-	<0,05	-	-
Nickel	mg/kg M.S.	-	0.4	1.2		<0,05	<0,05	-	<0,05	-	<0,05	-	-
Plomb	mg/kg M.S.	-	0.5	1.5		<0,05	<0,05	-	<0,05	-	<0,05	-	-
Zinc	mg/kg M.S.	-	4	12		<0,02	<0,02	-	<0,02	-	0.04	-	-
Selenium	mg/kg M.S.	-	0.1	0.3		<0,05	<0,05	-	<0,05	-	<0,05	-	-

^{*} Valeurs limites indicatives issues des textes européens, des arrêtés ministériel et des critères communément appliqués par les centres de stockage

LQ : Limite de quantification du laboratoire

concentration supérieure au bruit de fond et inférieure aux limites ISDI concentration supérieure aux valeurs limites des ISDI et inférieure aux limites ISDI+

(e) valeur non réglementaire mais parfois appliquée par les gestionnaires d'ISDI

⁽a) [Pour l'acceptation en ISDI], une valeur limite plus élevée peut être admise, à condition que la valeur limite de 500 mg/kg de matière sèche soit respectée pour le carbone organique total sur éluat, soit au pH du sol, soit pour un pH situé entre 7,5 et 8,0.

⁽b) Valeurs en gras : source = Teneurs totales en éléments traces métalliques dans les sols, Denis BAIZE, INRA. En italique : source = ATSDR

⁽c) Si le déchet ne respecte pas au moins une des valeurs fixées pour le chlorure, le sulfate ou la fraction soluble, le déchet peut être encore jugé conforme aux critères d'admission [en ISDI] s'il respecte soit les valeurs associées au chlorure et au sulfate, soit celle associée à la fraction soluble.

Tableau 12 : : Résultats d'analyses sur éluats des sondages de sol

					Localisation		elier d'entretien / enance	Aire de lavage	e / séparateur carbure	Parking / quai de chargement					
					Sondage	BGP11	BGP11	BGP16	BGP16	BGP14	BGP15	BGP17	BGP18		
				es valeurs limites desISDI+	Profondeur (m)	(0-1m)	(1-2m)	(0-1m)	(2-3m)	(0-1m)	(0-1m)	(0-1m)	(0-1m)		
		Bruit de fond	uit de fond Valeurs limite des		Lithologie	Sable limono- graveleux / Marron	Sable limono- graveleux / Beige	Sable graveleux et galets / Beige à marron clair	Sable limono- graveleux / Ocre à marron foncé	Sable limono- graveleux / Beige à ocre	Argile / Orange à ocre	Sable limono- graveleux / Ocre	Traces noirâtres		
		(b)	ISDI*		Indices organoleptiques	-	-	-	-	-	-	-	Traces noirâtres		
					PID (ppm V)	0	0	0	0	0	0	0	0		
ANALYSES SUR ELUAT															
Paramètres généraux															
pH	-	-	-	-		7.3	-	10	-	9.3	6.2	8.2	8.9		
Conductivité corrigée à 25 °C	μS/cm	-	-	-		54.5	-	110	-	87.6	100	250	160		
Fraction soluble (c)	mg/kg M.S.	-	4000	12000		<1000	-	<1000	-	<1000	<1000	1300	1100		
Carbone organique total	mg/kg M.S.	-	500	500		67	-	<10	-	17	27	27	180		
Indice phénol	mg/kg M.S.	-	1	3		<0,10	-	<0,10	-	<0,10	<0,10	<0,10	<0,10		
Anions															
Fluorures	mg/kg M.S.	-	10	30		2	-	2	-	11	1	6	3		
Chlorures (c)	mg/kg M.S.	-	800	2400		15	-	91	-	47	40	47	50		
Sulfates (c)	mg/kg M.S.	-	1000	3000		<50	-	54	-	57	53	340	190		
Métaux et métalloïdes															
Antimoine	mg/kg M.S.	-	0.06	0.18		<0,05	-	<0,05	-	<0,05	<0,05	<0,05	<0,05		
Arsenic	mg/kg M.S.	-	0.5	1.5		<0,05	-	0.09	-	<0,05	<0,05	<0,05	0.06		
Baryum	mg/kg M.S.	-	20	60		<0,10	-	<0,10	-	<0,10	0.21	0.24	<0,10		
Cadmium	mg/kg M.S.	-	0.04	0.12		<0,001	-	<0,001	-	<0,001	<0,001	<0,001	<0,001		
Chrome	mg/kg M.S.	-	0.5	1.5		<0,02	-	<0,02	-	<0,02	<0,02	<0,02	<0,02		
Cuivre	mg/kg M.S.	-	2	6		0.16	-	<0,02	-	<0,02	0.03	<0,02	0.21		
Mercure	mg/kg M.S.	-	0.01	0.03		<0,0003	-	<0,0003	-	<0,0003	<0,0003	<0,0003	<0,0003		
Molybdène	mg/kg M.S.	-	0.5	1.5		<0,05	-	<0,05	-	0.08	<0,05	0.06	<0,05		
Nickel	mg/kg M.S.	-	0.4	1.2		<0,05	-	<0,05	-	<0,05	0.06	<0,05	0.05		
Plomb	mg/kg M.S.	-	0.5	1.5		<0,05	-	<0,05	-	<0,05	<0,05	<0,05	<0,05		
Zinc	mg/kg M.S.	-	4	12		0.04	-	<0,02	-	<0,02	0.02	<0,02	0.03		
Selenium	mg/kg M.S.	-	0.1	0.3		<0,05	-	<0,05	-	<0,05	<0,05	<0,05	<0,05		

^{*} Valeurs limites indicatives issues des textes européens, des arrêtés ministériel et des critères communément appliqués par les centres de stockage

LQ : Limite de quantification du laboratoire

concentration supérieure au bruit de fond et inférieure aux limites ISDI

concentration supérieure aux valeurs limites des ISDI et inférieure aux limites ISDI+

(e) valeur non réglementaire mais parfois appliquée par les gestionnaires d'ISDI

⁽a) [Pour l'acceptation en ISDI], une valeur limite plus élevée peut être admise, à condition que la valeur limite de 500 mg/kg de matière sèche soit respectée pour le carbone organique total sur éluat, soit au pH du sol, soit pour un pH situé entre 7,5 et 8,0.

⁽b) Valeurs en gras : source = Teneurs totales en éléments traces métalliques dans les sols, Denis BAIZE, INRA. En italique : source = ATSDR

⁽c) Si le déchet ne respecte pas au moins une des valeurs fixées pour le chlorure, le sulfate ou la fraction soluble, le déchet peut être encore jugé conforme aux critères

d'admission [en ISDI] s'il respecte soit les valeurs associées au chlorure et au sulfate, soit celle associée à la fraction soluble.

Sur matériaux brut

Métaux et métalloïdes

Les concentrations en métaux sur sol brut dans les sables limono-graveleux et dans les horizons argileux sont inférieures ou du même ordre de grandeur que le bruit de fond géochimique national observé dans les sols ordinaires. On note cependant une anomalie ponctuelle modérée en plomb au droit du sondage BGP10 (0-1m) réalisé à proximité des cuves de fioul du groupe électrogène dans les sables limono-graveleux.

Composés organiques

Les **HCT** C₁₀-C₄₀ sont détectés sur 16 des 26 échantillons analysés. Les concentrations mesurées sont comprises entre 2,2 et 178,5 mg/kg MS, non significatives d'une pollution.

Des **HAP** sont détectés sur 8 des 26 échantillons analysés. Les teneurs sont comprises entre 0,062 et 13,96 mg/Kg MS et ne sont pas représentatives d'un impact.

Des **PCB** sont détectés sur un seul des 16 échantillons analysés avec une concentration de 0,029 mg/kg MS non significative d'une pollution.

Les BTEX et COHV n'ont pas été détectés sur les échantillons analysés.

Sur éluats

Les analyses sur éluats montrent trois dépassements des seuils de définition des déchets inertes (arrêté du 12/12/2014) pour le paramètre fluorures au droit des sondages BGP4 (0-1m), BGP6 (0-1m) et BGP14 (0-1m).

Zones de pollutions identifiées dans les sols

Aucune zone de pollution n'a été identifiée dans les sols analysés au droit du site d'étude

Gestion des déblais hors site

- Les sols présents au droit des sondages BGP4, BGP6 et BGP14 reconnus sur le premier mètre de profondeur sont identifiés comme non inertes (arrêté du 12/12/2014);
- En cas d'excavation et d'évacuation hors site des matériaux, sur la base des critères d'acceptation des filières de traitement et de leurs caractéristiques physico-chimiques, les filières d'élimination identifiées envisageables sont les suivantes :

 $oxed{oxed}$ ISDI

⊠ ISDI+

Les différentes zones non inertes identifiées sur le site d'étude sont présentées sur la Figure 5.

6. Synthèse des impacts et schéma conceptuel

6.1 Synthèse des impacts dans les différents milieux

Les investigations réalisées en janvier 2021 au droit de la zone sinistrée, ainsi qu'en février 2021 sur le reste du site, ont mis en évidence l'absence d'impact significatif dans les sols.

6.2 Schéma conceptuel

L'existence d'un risque sanitaire repose sur la présence concomitante d'une source de pollution, d'une cible et d'un mode de transfert de l'un à l'autre. La présence simultanée de ces trois éléments justifie la réalisation d'un schéma conceptuel.

Seule la présence concomitante d'une source, d'une voie de transfert et d'une cible peut conduire à un risque.

Les investigations menées sur les sols au droit du site n'ont pas mis en évidence de source de pollution. Par conséquent en l'absence de source de pollution, aucune voie de transfert n'est retenue. De ce fait, aucun schéma conceptuel ne sera réalisé.

7. Mesures de gestion

7.1 En matière de gestion des sources concentrées et risques sanitaires

Au regard des données disponibles, l'état du site apparait compatible avec les usages projetés concernant le réaménagement du site d'étude avec la construction d'un nouvel entrepôt d'environ 60 000 m², sous réserve du recouvrement pérenne des terres en place au droit du sondage S5 (0,3-1m) présentant une anomalie ponctuelle modérée en Arsenic par un revêtement ou une couche de matériaux sains de 30 cm d'épaisseur afin d'éviter tout contact direct avec les futurs usagers.

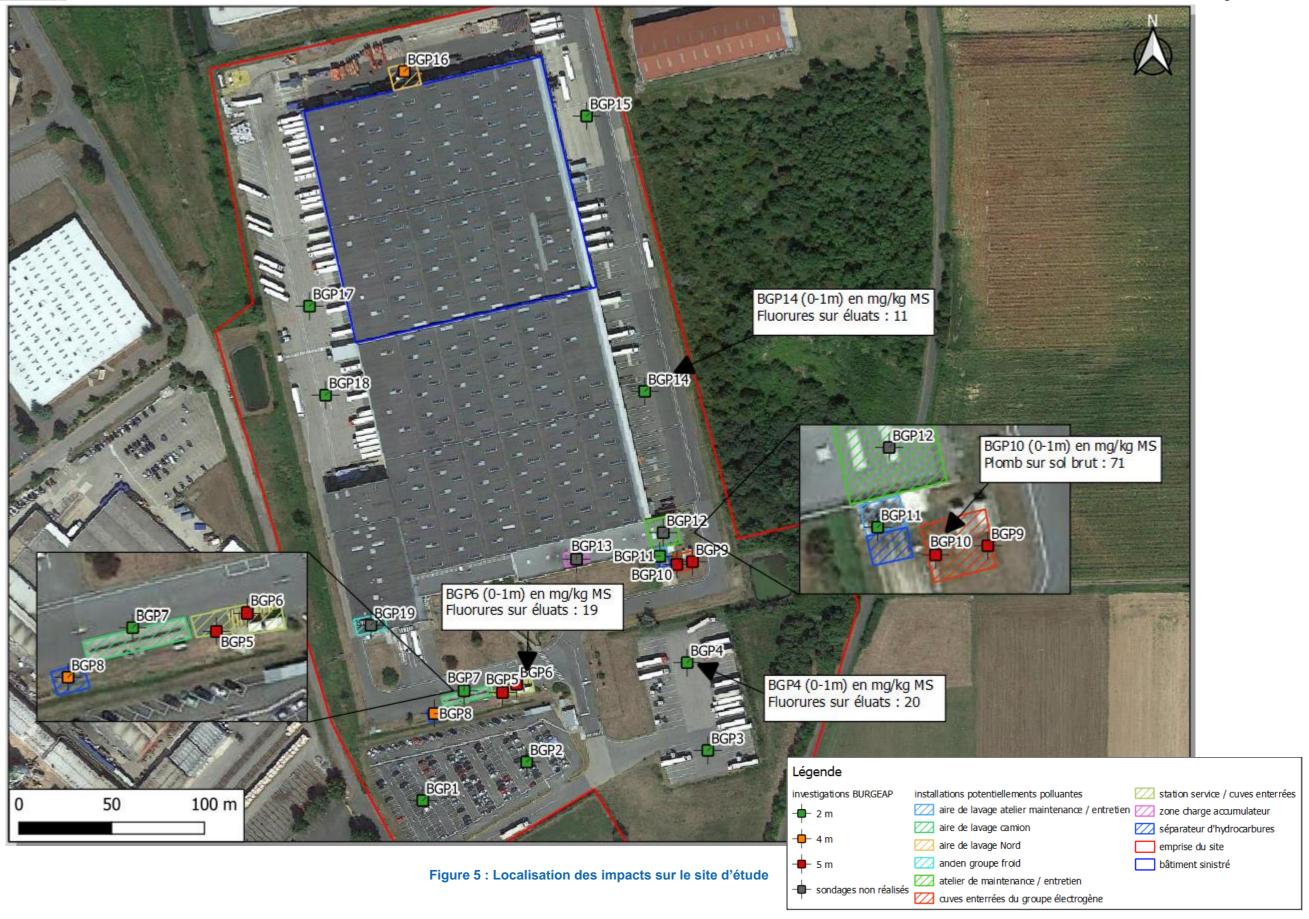
7.2 Gestion des terres excavées

D'après la réglementation française, les terres excavées prennent un statut de déchets dès lors qu'elles sont évacuées d'un site (site étant entendu comme parcelle ou groupement de parcelles objet d'une même unité foncière, d'un même permis d'aménager ou de construire). Ainsi, la gestion des terres excavées, sera réalisée conformément à la législation applicable aux déchets.

7.2.1 Réemploi sur site

Dans une logique de réduction des déchets à la source, il est recommandé de limiter le volume de matériaux évacués hors site et de favoriser autant que possible le réemploi des terres excavées sur site.

En cas de besoin en remblais dans le cadre des travaux, le réemploi des matériaux identifiés comme inertes et non inertes acceptable en filière ISDI+ est envisageable, sous réserve de leurs comptabilités géotechniques et sous couverture pour les matériaux issus du sondage S5 (0.3-1m) du fait de la présence d'une faible anomalie en arsenic.


La traçabilité de ces mouvements de terres devra être assurée en phase travaux pour préserver la mémoire du site (pose d'un géotextile ou d'un grillage avertisseur entre les remblais non inertes et les terres du site ou de recouvrement).

7.2.2 Evacuation hors site en filières adaptées

Si aucune solution de valorisation hors site n'est trouvée, sur la base des critères d'acceptation des filières de traitement et de leurs caractéristiques physico-chimiques, les filières d'élimination identifiées envisageables pour les matériaux en cas d'élimination hors site sont les suivantes :

- ISDI (Installation de Stockage de Déchets Inertes) ;
- **ISDI+**, (Installation de Stockage de Déchets Inertes +), au droit des sondages BGP4 (0-1m), BGP6 (0-1m) et BGP14 (0-1m).

Sur la base des prix du marché actuellement observés, le coût de gestion des matériaux identifiés non inertes et excavés dans le cadre du projet d'aménagement (transport et évacuation en filières adaptées) est estimé à environ 45 €HT/ tonne, hors frais liés au suivi des opérations (gestion, suivi, analyses, réception) ou au terrassement et hors aléas.

Solutions d'optimisation :

Ce montant ne prend pas en compte une éventuelle optimisation des volumes de terres non inertes à évacuer en filière spécifique et/ou coûts de gestion afférents par la mise en œuvre des opérations complémentaires suivantes avant ou pendant travaux :

- étude des solutions de réemploi sur site des matériaux non inertes compatibles du point de vue sanitaire en fonction de la modularité du projet d'aménagement et de la qualité géotechnique des matériaux;
- étude des possibilités de réutilisation hors site des matériaux non inertes, conformément aux modalités exposées dans le Guide de valorisation hors site des terres excavées issues de sites et sols potentiellement pollués dans les projets d'aménagement (Ministère de la transition écologique, novembre 2017); cette solution présente toutefois un certain nombre de contraintes qu'il conviendra d'analyser afin d'en vérifier la pertinence;
- réalisation d'analyses complémentaires avant travaux (sous-maillage), adaptées au plan de terrassement, ou pendant travaux (mise en stockage temporaire et analyses par lots d'environ100 m³), en considérant exclusivement les paramètres déclassants identifiés;
- consultation directe des entreprises de travaux permettant potentiellement d'optimiser l'opération financière pour la gestion de ces terres non inertes.

8. Synthèse et recommandations

8.1 Synthèse

La société ETCHE FRANCE est propriétaire du site localisé au 51 Rue des Communaux à Reyrieux (01).

Le site accueille actuellement des activités d'entreposage et de stockage non frigorifique de la société ITM LAI (plateforme logistique Intermarché). Ces activités sont soumises à autorisation au titre des Installations Classées pour la Protection de l'Environnement.

En octobre 2020, la partie Nord de l'entrepôt a fait l'objet d'un incendie. Le bâtiment sinistré fait actuellement l'objet de travaux de démolition. La seconde cellule de stockage au sud du site est en cours d'évacuation.

La société ETCHE FRANCE souhaite réaménager le site et construire un entrepôt neuf d'une surface de plancher d'environ 60 000 m².

Dans ce contexte, ETCHE FRANCE a missionné BURGEAP pour la réalisation d'un diagnostic environnemental du milieu souterrain au droit de son site.

Les investigations menées sur site en janvier et février 2021 ont mis en évidence :

- Sur les sols bruts :
 - une anomalie ponctuelle modérée en plomb sur les sols au droit du sondage BGP10 dans le premier mètre de sable limono-graveleux ;
 - aucun impact significatif en composés organiques sur les échantillons analysés ;
- Sur éluats :
 - des anomalies ponctuelles en fluorures sur éluats au droit des sondages BG4, BGP6 et BGP14 entre 0 et 1 mètre de profondeur ;
 - ces matériaux sont caractérisés comme non inertes (arrêté du 12/12/2014). En cas d'évacuation hors site, ces matériaux devront être orientés sur des filières de type ISDI+. Le réemploi des terres sur site ou la valorisation hors site est à privilégier.

D'après les données à notre disposition il n'apparait pas pertinent de réaliser une estimation de volumes de matériaux non inertes. Toutefois, au regard des caractéristiques chimiques des terres, en cas d'évacuation, elles pourront être dirigées vers une filière de type ISDI +, pour un coût de gestion (transport/élimination) en filière adaptée d'environ 45 €HT/ tonne, hors frais liés au suivi des opérations (gestion, suivi, analyses, réception) et/ou au terrassement, hors aléas et hors solutions d'optimisation.

8.2 Recommandations

Compte tenu de ces résultats, il est recommandé :

- En matière de gestion des pollutions concentrées et de risques sanitaires : le site d'étude est compatible avec les usages projetés sous réserve du recouvrement pérenne des terres en place au droit du sondage S5 (0,3-1m) présentant une anomalie ponctuelle et modérée en Arsenic par un revêtement ou une couche de matériaux sains de 30 cm d'épaisseur afin d'éviter tout contact direct avec les futurs usagers.
- En matière de gestion de déblais :
 - Les terres en place au droit des sondages BGP4, BGP6 et BGP14 entre 0 et 1 mètre de profondeur sont caractérisées non inertes. En cas d'évacuation hors site, ces matériaux devront

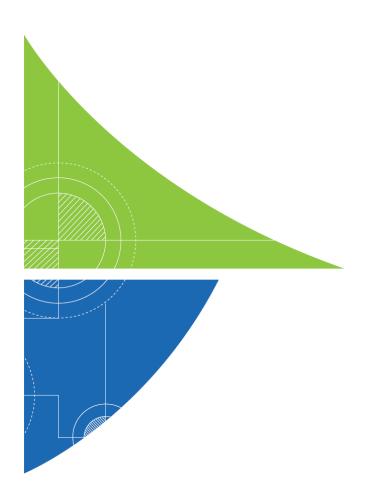
 Réf : CESICE210146 / RESICE12466-01
 CLBE / PC / SOGA
 26/03/2021
 Page 34/37

être orientés sur des filières de type ISDI+. Une réutilisation sur site ou valorisation est à privilégier ;

Solutions d'optimisation

- étude des solutions de réemploi sur site des matériaux non inertes compatibles du point de vue sanitaire en fonction de la modularité du projet d'aménagement et de la qualité géotechnique des matériaux ;
- étude des possibilités de réutilisation hors site des matériaux non inertes, conformément aux modalités exposées dans le Guide de valorisation hors site des terres excavées issues de sites et sols potentiellement pollués dans les projets d'aménagement (Ministère de la transition écologique, novembre 2017) ; cette solution présente toutefois un certain nombre de contraintes qu'il conviendra d'analyser afin d'en vérifier la pertinence ;
- réalisation d'analyses complémentaires avant travaux (sous-maillage) adaptées au plan de terrassement, ou pendant travaux (mise en stockage temporaire et analyses par lots d'environ 100 m³), en considérant exclusivement les paramètres déclassants identifiés;
- consultation directe des entreprises de travaux permettant potentiellement d'optimiser l'opération financière pour la gestion de ces terres non inertes.

Notons que BURGEAP ne pourra être tenu responsable si des terres excavées issues du site ne sont pas évacuées vers des exutoires dument habilités à les prendre en charge


9. Limites d'utilisation d'une étude de pollution

- 1- Une étude de la pollution du milieu souterrain a pour seule fonction de renseigner sur la qualité des sols, des eaux ou des déchets contenus dans le milieu souterrain. Toute utilisation en dehors de ce contexte, dans un but géotechnique par exemple, ne saurait engager la responsabilité de notre société.
- 2- Il est précisé que le diagnostic repose sur une reconnaissance du sous-sol réalisée au moyen de sondages répartis sur le site, soit selon un maillage régulier, soit de façon orientée en fonction des informations historiques ou bien encore en fonction de la localisation des installations qui ont été indiquées par l'exploitant comme pouvant être à l'origine d'une pollution. Ce dispositif ne permet pas de lever la totalité des aléas, dont l'extension possible est en relation inverse de la densité du maillage de sondages, et qui sont liés à des hétérogénéités toujours possibles en milieu naturel ou artificiel. Par ailleurs, l'inaccessibilité de certaines zones peut entraîner un défaut d'observation non imputable à notre société.
- 3- Le diagnostic rend compte d'un état du milieu à un instant donné. Des évènements ultérieurs au diagnostic (interventions humaines, traitement des terres pour améliorer leurs caractéristiques mécaniques, ou phénomènes naturels) peuvent modifier la situation observée à cet instant.
- 4- La responsabilité de BURGEAP ne pourra être engagée si les informations qui lui ont été communiquées sont incomplètes et/ou erronées et en cas d'omission, de défaillance et/ou erreur dans les informations communiquées.

La responsabilité de BURGEAP ne pourra être engagée si les préconisations ne sont pas mises en œuvre

ANNEXES

Annexe 1. Fiches d'échantillonnage des sols

Cette annexe contient 16 pages

Réf: CESICE210146 / RESICE12466-01

ZGING∃ R	ETCHE IT	M / A55333 /	REYRIEUX (01)	-	
BURGEAP	i	RESICE12466 CSSPCE210146			
Sondage n° : BGP1 Intervenant BURGEA Date : 19/02/2021 Condition météorolog	AP: CLBE Heure: 7h10	Sous-traitant: ASTARUSCLE Technique de forage: Tarière mécanique Profondeur atteinte (m/sol): 2 Diamètre de forage (mm) et gaine: 80/110	Confection d'échantillon : mo	BGP 105/10 byen -	
Localisation du sond: X: 1841090.581 Y Projection: CC46 Z (sol) - m NGF: 25	: 5195449.183	Analyses de terrain : PID Réf. Matériel : PID LYON n°2 *mesure PID de l'air ambiant au poste d'échantillonnage : 0 ppmV	Méthode d'échantillonnage :	enéisation e à main /autre	
Niveau de la nappe d'un piézomètre proche Pz n°: NC NS (m/sol): NC Sondage pour échantillons témoins: non		Doublons : non	Conditionnement des échantillons : pot sol brut (PE / verre)		
Remarques :	tillons temoins : non	Laboratoire : AGROLAB Date d'envoi au laboratoire : 19/02/2021	Conservation des échantillor gla	s : cière	

Sondage po	<u>ur ecnantill</u>	lons témoins : non	<u>Laboratoire</u>	: AGROLAB		Conservation des é	chantillons :	,	
Remarques	:	-	Date d'envo	i au laboratoire	e: 19/02/2021	glacière			
Prof.		COUPE GEOL	OGIQUE			OBSERVATIONS ET MES			
(m)	Lithologie	Description		Venues d'eau / humidité des sols	Obser Corps é	vations trangers	Analyses de terrain	N°	
0.00		Enrobé			5	g			
0.10	·								
0.10	$ \circ \cdot \circ \cdot $								
0.20	0								
	· · . 								
0.30									
	$\begin{bmatrix} \cdot & \cdot & \cdot \end{bmatrix}$								
0.40	$\begin{bmatrix} \cdot & \overline{\cdot} & \cdot \end{bmatrix}$								
	$\begin{bmatrix} \cdot & \cdot \\ - & \cdot \end{bmatrix}$							BGP1(0-	
0.50	; <u></u>						0ppmV	1m)	
0.60	. · <u></u>								
0.70	ا. انت ا								
0.80	ا [.]								
1 =									
0.90									
1.00	ا•. ب -								
	$\begin{bmatrix} \cdot & \cdots \\ \circ & \cdot \end{bmatrix}$	Sable limono-graveleux /	Ocre						
1.10									
1.20									
100	$\begin{bmatrix} \cdot & \overline{\cdot} \end{bmatrix}$								
1.30	ا : <u>ب:</u> : ا								
1.40									
	. <u></u>								
1.50							0ppmV	BGP1(1- 2m)	
	 							·	
1.60	$ \mathcal{O}.$ $\circ $								
1.70	°::								
1.70	·.○: -								
1.80	$ \cdot $								
	$[0, \dots, \overline{1}]$								
1.90	0								
	Ľ · <u>.</u>								
							1		

				T	
ZGING∃ R	ETCHE IT	M / A55333 /	REYRIEUX (01)	-	
BURGEAP	1	RESICE12466 CSSPCE210146			
Sondage n° : BGP1 Intervenant BURGEA Date : 18/02/2021 Condition météorolog	AP: CLBE Heure: 10h47	Sous-traitant: ASTARUSCLE Technique de forage: Tarière mécanique Profondeur atteinte (m/sol): 5 Diamètre de forage (mm) et gaine: 80/110	Confection d'échantillon : me Sous échantillons :	BGP 105/10 Dyen -	
Localisation du sond X : 1841212.565 Y Projection : CC46 Z (sol) - m NGF : 26	: 5195572.679	Analyses de terrain : PID Réf. Matériel : PID LYON n°2 *mesure PID de l'air ambiant	Préparation de l'échantillon : homogénéisation		
Niveau de la nappe d	l'un piézomètre proche NS (m/sol): NC	au poste d'échantillonnage : 0 ppmV	Méthode d'échantillonnage : truelle / pelle	e à main /autre	
Sondage pour échan	, , -	<u>Laboratoire</u> : AGROLAB	pot sol brut (PE / verre) Conservation des échantillons :		
Remarques :	-	Date d'envoi au laboratoire : 19/02/2021		cière	

<u>Sondage po</u>	<u>ur ecnantill</u>	ons témoins : non	<u>Laboratoire</u>	AGROLAB		Conservation de	e échantillone :	
Remarques	:	-	Date d'envo	oi au laboratoire : 1	9/02/2021	Conservation de	glacière	
Prof.		COUPE GEOL	OGIQUE		OBSI	ERVATIONS ET	Γ MESURES	
(m)	Lithologie	Description		Venues d'eau / humidité des sols	Obse Corps	rvations étrangers	Analyses de terrain	N°
0.00 _	* * * * * *	Terre végétale			'	<u> </u>		
0.40		Sable limono-graveleux / foncé	Marron				0ppmV	BGP10(0 -1m)
0.80				-				
1.20 — - - - - -			.					BGP10(1
1.60		Sable graveleux et galets	s / Beige				0ppmV	-2m)
2.00	• • • • •			-				
2.40							0ppmV	BGP10(: -3m)
3.20		Sable limono-graveleux / foncé	Marron				One will	BGP10(:
3.60							0ppmV	BGP10(3 -4m)
4.40		Cabla linear mount	(Daine				Onestal	BGP10(4
4.80		Sable limono-graveleux /	Deige				0ppmV	-5m) `
5.20 =								

ZGING∃ R	ETCHE IT	M / A55	5333 /	REYRIEUX (01)	-		
BURGEAP		RESICE12466 CSSPCE210146					
Sondage n° : BGP1 Intervenant BURGEA Date : 18/02/2021 Condition météorolog	AP : CLBE Heure : 13h45	Sous-traitant: ASTARU: Technique de forage: Terprofondeur atteinte (m/sol Diamètre de forage (mm)	arière mécanique) : 2	Confection d'échantillon : m Sous échantillons :	BGP 105/1 oyen -		
Localisation du sond X: 1841204.486 Y Projection: CC46 Z (sol) - m NGF: 26	': 5195576.919	Analyses de terrain : PIC Réf. Matériel : PID LYOI *mesure PID de l'air ambia au poste d'échantillonnag	Matériel : PID LYON n°2 homogénéisaí sure PID de l'air ambiant Méthode d'échantillonnage :				
	NS (m/sol) : NC	Doublons : non		Conditionnement des échan	Conditionnement des échantillons : pot sol brut (PE / verre)		
Remarques :	tillons temoins : non	Laboratoire : AGROLAB Date d'envoi au laboratoire	Date d'envoi au laboratoire : 19/02/2021		ns : cière		
Prof	COUPE GEOL	OGIQUE	OB	SERVATIONS ET MESURI	ES		

D			Data d'anyai	au labarataire	. 10/02/2021	Conservation des é	chantillons :	
Remarques	:	-	Date d envoi	envoi au laboratoire : 19/02/2021 glacière				
Prof.		COUPE GEOL	OGIQUE		OBSE	RVATIONS ET M	ESURES	
(m)	Lithologie	Description		Venues d'eau / humidité des sols	Observ Corps ét	rations rangers	Analyses de terrain	N°
0.00	ቋ ቋ ቋ 11 * _* _* _* _	Terre végétale			·			
0.10								
0.30								
0.40	0.1.0	Cabla limana avavalavuv	Maman				0ppmV	BGP11(0 -1m)
0.60	∘.	Sable limono-graveleux /	Marron					,
0.70								
0.80	° :							
0.90	. <u></u> .							
1.10								
1.20								
1.30	· · · · ·							
1.40		Sable limono-graveleux /	Beige				0ppmV	BGP11(1
1.60	· · · · ·							-2m) `
1.70								
1.80								
1.90	. <u></u> .							
							I	

ZGING∃ R	ETCHE IT	M / A55333 /	REYRIEUX (01)	-	
BURGEAP	F	RESICE12466 CSSPCE210146			
Sondage n° : BGP1 Intervenant BURGE/ Date : 18/02/2021 Condition météorolog	AP: CLBE Heure: 14h00	Sous-traitant: ASTARUSCLE Technique de forage: Tarière mécanique Profondeur atteinte (m/sol): 2 Diamètre de forage (mm) et gaine: 80/110	Confection d'échantillon : mo	BGP 105/10 Dyen -	
Localisation du sond X:1841203.995 Y Projection: CC46 Z (sol) - m NGF: 29	´: 5195652.87	Analyses de terrain : PID Réf. Matériel : PID LYON n°2 *mesure PID de l'air ambiant	Préparation de l'échantillon : homogénéisation Méthode d'échantillonnage :		
Niveau de la nappe d'un piézomètre proche Pz n° : NC NS (m/sol) : NC		au poste d'échantillonnage : 0 ppmV Doublons : non	truelle / pelle à main /autre Conditionnement des échantillons : pot sol brut (PE / verre)		
Sondage pour échan Remarques :	tillons témoins : non -	<u>Laboratoire</u> : AGROLAB Date d'envoi au laboratoire: 19/02/2021	Conservation des échantillor	,	

				· NONOLND	10/00/0004	Conservation des é	chantillons :	
Remarques	:	-	Date d'envo	i au laboratoir	e: 19/02/2021		glacière	
Prof.		COUPE GEOL	OGIQUE OBSERVATIONS ET MESURES					
	Lithologie	Description		Venues d'eau / humidité des sols	Observ Corps ét	/ations	Analyses de terrain	N°
0.00		Enrobé			00.00			
0.10	<u> </u>							
0.20								
0.30	;;;; ;;;;							
0.40	. . -							BGP14(0
0.50							0ppmV	-1m)
0.60	0							
0.80								
0.90								
1.00		Sable limono-graveleux /	Beige à					
1.10	: . :::	ocre						
1.20								
1.30								
1.40								
1.50	 						0ppmV	BGP14(1 -2m)
1.60								
1.70								
1.80	·							
1.90	0:							

FTOU	T ITM / AFF000 /	DEVDIEUV (64)	<u> </u>				
BURGEAP EICH	FICHE D'ECHANTILLONNAGE DES SOLS						
Sondage n° : BGP15 Intervenant BURGEAP : CLBE Date : 18/02/2021 Heure : 14h35 Condition météorologique : Nuageux	Sous-traitant: ASTARUSCLE Technique de forage: Tarière mécanique Profondeur atteinte (m/sol): 2 Diamètre de forage (mm) et gaine: 80/110	Confection d'échantillon : m Sous échantillons :	BGP 105/10 oyen -				
<u>Localisation du sondage</u> X : 1841170.419 Y : 5195815.534 Projection : CC46 Z (sol) - m NGF : 258.875	Analyses de terrain: PID Réf. Matériel: PID LYON n°2 *mesure PID de l'air ambiant	Préparation de l'échantillon : homogénéisation Méthode d'échantillonnage :					
Niveau de la nappe d'un piézomètre proche Pz n°: NC NS (m/sol): NC	au poste d'échantillonnage : 0 ppmV Doublons : non	truelle / pelle à main /autre Conditionnement des échantillons : pot sol brut (PE / verre)					
Sondage pour échantillons témoins : non Remarques :	Laboratoire : AGROLAB Date d'envoi au laboratoire : 19/02/2021	Conservation des échantillons :					

Remarques	:	_	Date d'envoi au la	aboratoire	: 19/02/2021	Conservation des é	chantillons : glacière	
		COUPE GEOL	OGIQUE	Т	OBSE	⊥ RVATIONS ET M		
Prof. (m)	Lithologie			ues d'eau / dité des sols	Observ Corps ét	ations	Analyses de terrain	N°
0.00		Enrobé			•			
0.10								
0.20								
0.30								
0.50		Argile / Orange à ocre					0ppmV	BGP15(0
0.60		- 0						-1m)
0.70								
0.80								
0.90								
1.00								
1.10								
1.20								
1.30								
1.40		Applies of well 1 / C	,				0	BGP15(1
1.50		Argile et galets / Orange	a ocre				0ppmV	-2m)
1.60								
1.70								
1.90								

GINGER	ETCHE IT	M / A55333 / F	REYRIEUX (01)	-	
BURGEAP	F	RESICE12466 CSSPCE210146			
Sondage n° : BGP1 Intervenant BURGE Date : 18/02/2021 Condition météorolog	AP: CLBE Heure: 15h00	Sous-traitant: ASTARUSCLE Technique de forage: Tarière mécanique Profondeur atteinte (m/sol): 4 Diamètre de forage (mm) et gaine: 80/110	Confection d'échantillon : mo	BGP 105/10 byen -	
Localisation du sond X:1841068.968 Y Projection: CC46	′: 5195840.73	Analyses de terrain : PID Réf. Matériel : PID LYON n°2 *mesure PID de l'air ambiant	Préparation de l'échantillon : homogénéisation		
Z (sol) - m NGF : 2	60.365 d'un piézomètre proche	au poste d'échantillonnage : 0 ppmV	Méthode d'échantillonnage : truelle / pelle à main /autre		
Pz n°: NC NS (m/sol): NC		Doublons : non	Conditionnement des échantillons : pot sol brut (PE / verre)		
<u>-</u> .	itillons temoins : non	Laboratoire : AGROLAB	Conservation des échantillons :		
Remarques :	-	Date d'envoi au laboratoire : 19/02/2021	glacière		

			: AGROLAB		Conservation des é	chantillons :		
Remarques	:	-	Date d'envo	i au laboratoire	e: 19/02/2021		glacière	
Prof.		COUPE GEOL	OGIQUE			OBSERVATIONS ET ME		
(m)	Lithologie	Description		Venues d'eau / humidité des sols	Observ Corps é	≀ations trangers	Analyses de terrain	N°
0.00	·	Enrobé		-				
0.20	Δ· . Ξ							
0.40		Sable graveleux et galets marron clair	s / Beige à				0ppmV	BGP16(0 -1m)
0.60		marron clair						,
0.80								
1.00	<u>.</u>							
1.20	· · · ·							
1.40		Sable limono-graveleux / Ocre					0ppmV	BGP16(1 -2m)
1.60	[:. <u></u>							,
1.80								
2.00				-				
2.20	0							
2.40	; <u>· · · · · · · · · · · · · · · · · · ·</u>	Sable limono-graveleux / marron foncé	Ocre à				0ppmV	BGP16(2 -3m)
2.60	· —							
2.80								
3.00	0.0:							
3.20	. : : :							
3.40		Sable limono-graveleux / Ocre					0ppmV	BGP16(3 -4m)
3.60	· - ·							
3.80	0.1.							
	10 U -			I			<u> </u>	

GINGER	ETCHE IT	M / A55333 /	REYRIEUX (01)	-						
BURGEAP	F	FICHE D'ECHANTILLONNAGE DES SOLS								
Sondage n° : BGP1 Intervenant BURGE/ Date : 18/02/2021 Condition météorolog	AP : CLBE Heure : 15h15	Sous-traitant: ASTARUSCLE Technique de forage: Tarière mécanique Profondeur atteinte (m/sol): 2 Diamètre de forage (mm) et gaine: 80/110	Confection d'échantillon : me Sous échantillons :	BGP 105/10 oyen -						
Localisation du sondage X: 1841015.297 Y: 5195725.971 Projection: CC46 Z (sol) - m NGF: 258.92 Niveau de la nappe d'un piézomètre proche Pz n°: NC NS (m/sol): NC Sondage pour échantillons témoins: non		Analyses de terrain : PID Réf. Matériel : PID LYON n°2	Préparation de l'échantillon : homogénéisation							
		*mesure PID de l'air ambiant au poste d'échantillonnage : 0 ppmV	Méthode d'échantillonnage : truelle / pelle à main /autre							
		Doublons : non	Conditionnement des échantillons : pot sol brut (PE / verre)							
		<u>Laboratoire</u> : AGROLAB	Conservation des échantillons :							
Remarques :	-	Date d'envoi au laboratoire : 19/02/2021	gla	cière						

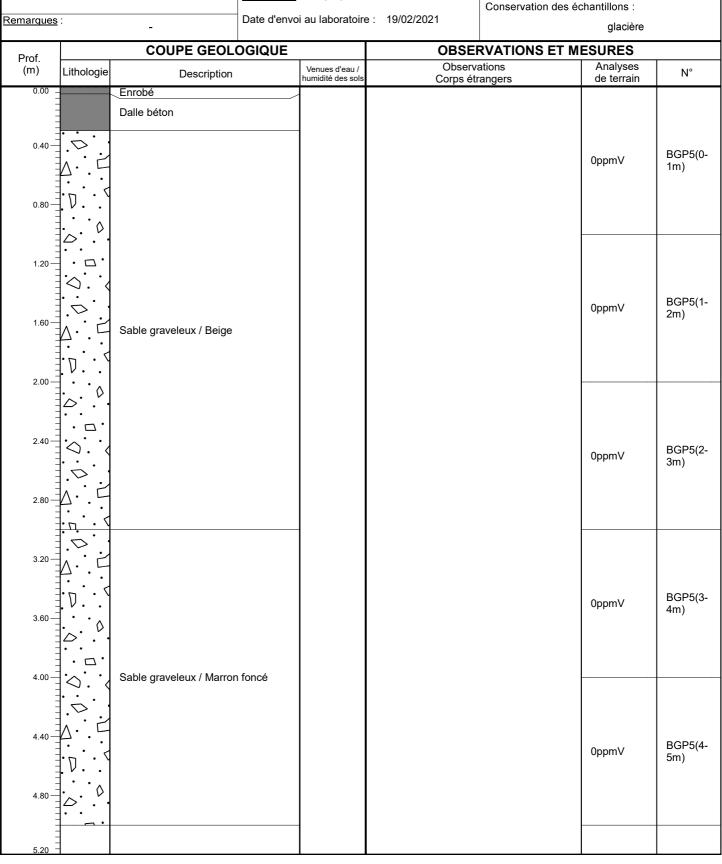
		ons temoins . non		: AGROLAB		Conservation des	échantillons :	
Remarques	:	-	Date d'envo	i au laboratoire	e: 19/02/2021		glacière	
Doof		COUPE GEOL	OGIQUE		OBS	ERVATIONS ET N	MESURES	
Prof. (m)	Lithologie	Description		Venues d'eau / humidité des sols	Obse	ervations étrangers	Analyses de terrain	N°
0.00		Enrobé		l annuale des sols	Оогра	Citangers	uo torrum	
0.10	·. O :							
0.20	. 0 .							
0.30								
0.40								
0.50							0ppmV	BGP17(0 -1m)
0.60	0:							
0.70								
0.80	° —							
1.00	· · · ·							
1.10	0	Sable limono-graveleux	/ Ocre					
1.20								
1.30								
1.40								
1.50	. i o						0ppmV	BGP17(1 -2m)
1.60								
1.70								
1.80	<u> </u>							
1.90	· · · · · · · · · · · · · · · · · · ·							

ZGING∃ R	ETCHE IT	M / A55333 / I	REYRIEUX (01)	-				
BURGEAP	I	FICHE D'ECHANTILLONNAGE DES SOLS						
Sondage n° : BGP1 Intervenant BURGEA Date : 18/02/2021 Condition météorolog	AP: CLBE Heure: 16h30	Sous-traitant: ASTARUSCLE Technique de forage: Tarière mécanique Profondeur atteinte (m/sol): 2 Diamètre de forage (mm) et gaine: 80/110	Confection d'échantillon : me Sous échantillons :	BGP 105/10 Dyen -				
Localisation du sond X : 1841028.471 Y Projection : CC46	: 5195667.048	Analyses de terrain : PID Réf. Matériel : PID LYON n°2 *mesure PID de l'air ambiant	Préparation de l'échantillon : homogénéisation					
Z (sol) - m NGF: 258.943		au poste d'échantillonnage : 0 ppmV	Méthode d'échantillonnage : truelle / pelle à main /autre					
Niveau de la nappe d'un piézomètre proche Pz n°: NC NS (m/sol): NC		Doublons : non	Conditionnement des échantillons : pot sol brut (PE / verre)					
Sondage pour échan	tillons témoins : non	Laboratoire : AGROLAB	Conservation des échantillons :					
Remarques :	-	Date d'envoi au laboratoire : 19/02/2021	gla	cière				

	Date d'envoi au laborato			Conservation des échantillons :				
Remarques	:	-	Date d'envo	i au laboratoire	e: 19/02/2021		glacière	
Prof.		COUPE GEOL	OGIQUE		OBSE	RVATIONS ET M	ESURES	
(m)	Lithologie	Description		Venues d'eau / humidité des sols	Observ Corps éti	ations rangers	Analyses de terrain	N°
0.00		Enrobé			51,71	g		
0.10								
0.30	. v							
0.40	.0	Cable annual and adapted	. / Crita		Traces noirâtres		0ppmV	BGP18(0
0.60	Δ·	Sable graveleux et galets foncé	S / GIIS				Орр	-1m)
0.70	D							
0.80								
0.90								
1.00	° Ö -							
1.10								
1.30	0.							
1.40	° —							
1.50	· · · ·	Sable limono-graveleux /	Ocre				0ppmV	BGP18(1 -2m)
1.60	0.							
1.70								
1.80								
1.90	• • •							
	·							

	ETCHE IT		REYRIEUX (01)	_						
BURGEAP		FICHE D'ECHANTILLONNAGE DES SOLS								
Sondage n° : BGP2 Intervenant BURGEA Date : 19/02/2021 Condition météorolog	AP: CLBE Heure: 7h20	Sous-traitant: ASTARUSCLE Technique de forage: Tarière mécanique Profondeur atteinte (m/sol): 2 Diamètre de forage (mm) et gaine: 80/110	Confection d'échantillon : m Sous échantillons :	BGP 105/1 oyen						
Localisation du sond X:1841136.474 Y Projection: CC46 Z (sol) - m NGF: 26	5195467.843	Analyses de terrain: PID Réf. Matériel: PID LYON n°2 *mesure PID de l'air ambiant au poste d'échantillonnage: 0 ppmV	Préparation de l'échantillon : homogénéisation Méthode d'échantillonnage :							
Niveau de la nappe d'un piézomètre proche Pz n°: NC NS (m/sol): NC		Doublons : non	truelle / pelle à main /autre Conditionnement des échantillons : pot sol brut (PE / verre)							
Sondage pour échan	<u>tillons témoins</u> : non	Laboratoire : AGROLAB	Conservation des échantillons :							
Remarques :	-	Date d'envoi au laboratoire : 19/02/2021	gla	cière						

	ar conantin	ons temoins : non	Laboratoire	: AGROLAB		Conservation des é	chantillons :	,
Remarques :		-	Date d'envo	i au laboratoire	e: 19/02/2021		glacière	
Prof.		COUPE GEOL	OGIQUE			RVATIONS ET M		
	Lithologie	Description		Venues d'eau / humidité des sols	Obser Corps é	vations trangers	Analyses de terrain	N°
0.00		Enrobé			5,	g		
0.10	· <u> </u>							
0.10	\cdot . \cdot . †							
0.20	0							
	∷ □							
0.30	0							
	$\langle \cdot \cdot \cdot \rangle$							
0.40	$\begin{bmatrix} \cdot & \overline{\cdot} & \cdot \end{bmatrix}$							
0.50	$\stackrel{\cdot}{\cdots}$:						0ppmV	BGP2(0-
0.50	$^{\circ}$						υρριτίν	1m)
0.60								
	:::]							
0.70	\vdots							
1	\mathcal{L}							
0.80	\sim							
0.90								
0.90	$\frac{1}{2}$							
1.00	$^{\circ}$. $^{\circ}$. †							
	0	Sable limono-graveleux /	Ocre					
1.10	: · . ·							
	<u>،</u>							
1.20	٠. <u>.</u> ا							
1.30	:]							
	$\frac{\cdot}{\cdot}$							
1.40	° O : I							
	· <u>· · ·</u>							DODO/4
1.50	\therefore						0ppmV	BGP2(1- 2m)
	ا:کرۃ							
1.60	$\frac{1}{2}$							
1.70	\vdots							
	<u>.</u> ::							
1.80	$[\overline{\dot{O}}]$							
	`. <u>`.</u>]							
1.90	<u>o·</u>							
	<u></u>]							


ZGING∃ R	ETCHE IT	M /	A55333 /	REY	RIEUX (01)	-	
BURGEAP	F	ICHE D'ECHAN	SOLS		RESICE12466 CSSPCE210146		
Sondage n° : BGP3 Intervenant BURGEA Date : 19/02/2021 Condition météorolog	AP: CLBE Heure: 7h45	Profondeur atteinte	e : Tarière mécanique		<u>nfection d'échantillon</u> : mo us échantillons :	BGP 105/10 byen -	
Localisation du sondage X: 1841230.018 Y: 5195478.5 Projection: CC46		Analyses de terrain : PID Réf. Matériel : PID LYON n°2			Préparation de l'échantillon : homogénéisation		
Z (sol) - m NGF : 26		*mesure PID de l'air ambiant au poste d'échantillonnage : 0 ppmV		Mé	Méthode d'échantillonnage : truelle / pelle à main /autre		
Niveau de la nappe d'un piézomètre proche Pz n°: NC NS (m/sol): NC Sondage pour échantillons témoins: non		Doublons : non			Conditionnement des échantillons : pot sol brut (PE / verre)		
Sondage pour echan	tillons temoins : non	Laboratoire : AGF	ROLAB	Co	nservation des échantillon	s:	
Remarques :	-	Date d'envoi au lab	oratoire : 19/02/2021		glad	cière	

D			Date d'envoi au laborato	ro : 10/02/2021	Conservation des é	chantillons :	
Remarques	:	-	Date d'envoi au laborato	re: 19/02/2021		glacière	
Prof.		COUPE GEOL	OGIQUE		RVATIONS ET M		
(m)	Lithologie	Description	Venues d'eau / humidité des so	Obser s Corps é	vations trangers	Analyses de terrain	N°
0.00		Enrobé			<u> </u>		
0.10							
0.30							
0.40							BGP3(0-
0.50		Agiles et galets / Grise à	verte			0ppmV	1m)
0.60							
0.70							
0.80							
0.90							
1.00							
1.10							
1.20							
1.30							
1.40) · () · (
1.50	Δ	Sable et galets / Gris				0ppmV	BGP3(1- 2m)
1.60	7						
1.70	<u>۵</u> : ۵						
1.80							
1.90							
	<u>۲</u> ٠. ۲						

ZGING∃ R	ETCHE IT	M / A55	5333 / F	REYRIEUX (01)	- RESICE12466				
BURGEAP		FICHE D'ECHANTILLONNAGE DES SOLS							
Sondage n° : BGP4 Intervenant BURGE Date : 19/02/2021 Condition météorolo	AP: CLBE Heure: 8h00	Sous-traitant : ASTARUS Technique de forage : To Profondeur atteinte (m/sol Diamètre de forage (mm)	arière mécanique) : 2	Confection d'échant Sous échantillons :	illon : BGP 105/10 moyen -				
Localisation du sono X: 1841222.773 Projection: CC46 Z (sol) - m NGF: 2	7: 5195525.138	Analyses de terrain : PID Réf. Matériel : PID LYOI *mesure PID de l'air ambia au poste d'échantillonnag	N n°2 ant	Préparation de l'échantillon : homogénéisation Méthode d'échantillonnage :					
	d'un piézomètre proche NS (m/sol) : NC ntillons témoins : non	Doublons : non		truelle / pelle à main /autre Conditionnement des échantillons : pot sol brut (PE / verre)					
Remarques :	HOH	Laboratoire : AGROLAB Date d'envoi au laboratoire		Conservation des échantillons : glacière					
Prof.	COUPE GEOL	OGIQUE	OBSE	RVATIONS ET M	ESURES				
	1	1	Ohaami	ations	Analyses				

Remarques	:		Date d'envo	oi au laboratoir	e: 19/02/2021	Conservation des é		
	Г	-					glacière	
Prof.		COUPE GEOL	OGIQUE	I		RVATIONS ET M vations	Analyses	
(m)	Lithologie	·		Venues d'eau / humidité des sols	Corps é	trangers	de terrain	N°
0.00	· · · ·	Enrobé						
0.10	•.							
0.20	· · · ·							
0.30	0.							
0.40	· · · · ·							
0.50). .(0ppmV	BGP4(0- 1m)
0.60								
0.70								
0.80								
0.90	0.							
1.00		Sable limono-graveleux /	Beige à					
1.10		ocre	20.gc a					
1.20	0.							
	· · · · · ·							
1.30	71.0							
1.40	· · · ·							DOD4/4
1.50	; 						0ppmV	BGP4(1- 2m)
1.60								
1.70								
1.80								
1.90	· · · ·							
	ļ <u></u> .							

 GING	I D	ETCHE IT	ГМ	/ A55	333 /	REYRIEUX (01)	-	
BURGEA		FICHE D'ECHANTILLONNAGE DES SOLS						
Sondage n°: BGP5 Intervenant BURGEAP: CLBE Date: 18/02/2021 Heure: 9h50 Condition météorologique: Soleil Localisation du sondage X: 1841119.499 Y: 5195506.68 Projection: CC46 Z (sol) - m NGF: 259.199			Sous-traitant: ASTARUSCLE Technique de forage: Tarière mécanique Profondeur atteinte (m/sol): 5 Diamètre de forage (mm) et gaine: 80/110 Confection d'échantillo Sous échantillos:				moyen -	
			Réf. Matérie *mesure PII	e terrain : PID el : PID LYON D de l'air ambia échantillonnag	N n°2 ant	Préparation de l'échantillon :		
Pz n°: NC	Niveau de la nappe d'un piézomètre proche Pz n°: NC NS (m/sol): NC Sondage pour échantillons témoins: non			non : AGROLAB				
Sondage pour echantillons temoins : non Remarques : -			Laboratoire Date d'envo		e: 19/02/2021	Conservation des échantillons : glacière		
Prof. (m) Lit		COUPE GEOL	.OGIQUE		OBSERVATIONS ET MESURES			
	_ithologie	Description		Venues d'eau /			lyses N°	

ZGING∃ R	ETCHE IT	М	/ A55	333 /	REYRIEUX (01)	-		
BURGEAP		I	SICE12466 SPCE210146					
Sondage n° : BGP0 Intervenant BURGE Date : 18/02/2021 Condition météorolo	AP: CLBE Heure: 10h00	Technique d Profondeur a	atteinte (m/sol	arière mécanique	Confection d'échantil Sous échantillons :	Confection d'échantillon : moyen Sous échantillons : -		
Localisation du sond X : 1841127.425 Projection : CC46		Analyses de terrain : PID Réf. Matériel : PID LYON n°2 *mesure PID de l'air ambiant au poste d'échantillonnage : 0 ppmV Doublons : non			Préparation de l'échantillon : homogénéisation			
Z (sol) - m NGF : 2	d'un piézomètre proche				Méthode d'échantillonnage : truelle / pelle à main /autre			
Pz n°: NC	NS (m/sol) : NC				Conditionnement des échantillons : pot sol brut (PE / verre)			
Sondage pour écha	ntillons témoins : non	<u>Laboratoire</u> :	AGROLAB		Conservation des échantillons :			
Remarques :	-	Date d'envoi au laboratoire : 19/02/2021		glacière				
Prof.	COUPE GEOLOGIQUE			OBSERVATIONS ET MESURES				
(m) Litholo	nie Danamintian		Venues d'eau /	Obs	ervations	Analyses	N°	

				e d'envoi au laboratoire : 19/02/2021		Conservation des échantillons :		
Remarques	:	-	Date d'envo	i au laboratoire	e: 19/02/2021		glacière	
Prof	Prof. COUPE GEOLOGIQ					RVATIONS ET M		
(m)	Lithologie	Description		Venues d'eau / humidité des sols	Observ Corps éti	ations rangers	Analyses de terrain	N°
0.00 _		Dalle béton				<u> </u>		
0.40	V	Sable graveleux / Beige			Odeur d'hydrocabures	S	30.2 ppmV	BGP6(0- 1m)
0.80	. V							
1.20	0						0.2 ppmV	BGP6(1-
1.60							5.2 ppmv	2m) `
2.00								
2.80		Sable limono-graveleux	/ Beige				0ppmV	BGP6(2- 3m)
3.20							Opposit	BGP6(3-
3.60	0						0ppmV	BGP6(3- 4m)
4.00	Δ·							
4.80	.D	Sable graveleux / Beige					0ppmV	BGP6(4- 5m)
5.20								

ZGING∃ R	ETCHE IT	M / A55333 / I	REYRIEUX (01)	-	
BURGEAP	F	RESICE12466 CSSPCE210146			
Sondage n° : BGP7 Intervenant BURGE/ Date : 18/02/2021 Condition météorolog	AP: CLBE Heure: 9h40	Sous-traitant: ASTARUSCLE Technique de forage: Tarière mécanique Profondeur atteinte (m/sol): 2 Diamètre de forage (mm) et gaine: 80/110	Confection d'échantillon : mo	BGP 105/10 Dyen -	
Localisation du sond X:1841099.828 Y Projection: CC46	′ : 5195507.046	Analyses de terrain : PID Réf. Matériel : PID LYON n°2 *mesure PID de l'air ambiant	Préparation de l'échantillon : homogénéisation		
Z (sol) - m NGF : 259.061 Niveau de la nappe d'un piézomètre proche		au poste d'échantillonnage : 0 ppmV	Méthode d'échantillonnage : truelle / pelle à main /autre		
Pz n°: NC I	NS (m/sol) : NC	Doublons : non	Conditionnement des échantillons : pot sol brut (PE / verre)		
- •	<u>itillons témoins</u> : non	Laboratoire : AGROLAB	Conservation des échantillon	s:	
Remarques :		Date d'envoi au laboratoire : 19/02/2021	dla	cière	

Sondage po				: AGROLAB		Conservation des échantillons :			
Remarques	:	-		i au laboratoire	: 19/02/2021		glacière		
Prof.	COUPE GEOL		OGIQUE				NS ET MESURES		
(m)	Lithologie	Description		Venues d'eau / humidité des sols	Observ Corps é	vations trangers	Analyses de terrain	N°	
0.00		Enrobé							
0.20									
0.30	·								
0.50	. O . C						0ppmV	BGP7(0- 1m)	
0.60								,	
0.70									
0.80									
0.90									
1.10	. v √	Sable graveleux / Ocre							
1.20									
1.30									
1.40									
1.50	. D S						0ppmV	BGP7(1- 2m)	
1.60									
1.70	3.0								
1.90									
	:D.:.								

ZGING∃ R	ETCHE IT	M / A55333 /	REYRIEUX (01)	-		
BURGEAP		LS	RESICE12466 CSSPCE210146			
Sondage n° : BGP8 Intervenant BURGEA Date : 18/02/2021 Condition météorolog	AP: CLBE Heure: 9h15	Sous-traitant: ASTARUSCLE Technique de forage: Tarière mécanique Profondeur atteinte (m/sol): 4 Diamètre de forage (mm) et gaine: 80/110	Confection d'échantillon : moyen Sous échantillons : -			
Localisation du sond X: 1841085.427 Y Projection: CC46 Z (sol) - m NGF: 25	′ : 5195494.367	Analyses de terrain : PID Réf. Matériel : PID LYON n°2 *mesure PID de l'air ambiant	Préparation de l'échantillon : homogénéisation Méthode d'échantillonnage :			
Niveau de la nappe d'un piézomètre proche Pz n°: NC NS (m/sol): NC		au poste d'échantillonnage : 0 ppmV Doublons : non	truelle / pelle à main /autre Conditionnement des échantillons :			
Sondage pour échan		<u>Laboratoire</u> : AGROLAB	pot sol brut (PE / verre)			
Remarques :	-	Date d'envoi au laboratoire : 19/02/2021	Conservation des échantillor gla	cière		

	I				Conservation des échantillons :		
-			i au laboratoire	e: 19/02/2021		glacière	
	COUPE GEOL	OGIQUE		OBSERVATIONS ET MESURES			
nologie	Description		Venues d'eau / humidité des sols	Observa Corps étr	ations angers	Analyses de terrain	N°
* * 1	Terre végétale			·	<u> </u>		
·—·						0ppmV	BGP8(0- 1m)
$\frac{\cdot}{\cdot}$							
\vdots	foncé	Marron					
. <u>.</u> .							BGP8(1-
				Traces noirâtres		0ppmV	2m)
<u></u>							
·						Oppm\/	BGP8(2-
ے. ا						орриту	3m) `
0:							
	Sable limono-graveleux /	Beige					
<u>∵</u> .							
						0ppmV	BGP8(3- 4m)
	* * 1 	Description Terre végétale Sable limono-graveleux / foncé Solicione Solic	Terre végétale Sable limono-graveleux / Marron	Description Venues d'eau / humidité des sols Terre végétale Sable limono-graveleux / Marron foncé	Observation Venues d'eau / humidité des sols Terre végétale Sable limono-graveleux / Marron foncé Traces noirâtres	Description Venues d'eau / humidité des sols Terre végétale Sable limono-graveleux / Marron foncé Traces noirâtres Traces noirâtres	Description Nemues d'anu. Character Corps étrangers Analyses de terrain

ZGING∃ R	ETCHE IT	M / A55333 / F	REYRIEUX (01)	-	
BURGEAP	I	RESICE12466 CSSPCE210146			
Sondage n° : BGP9 Intervenant BURGE/ Date : 18/02/2021 Condition météorolog	AP: CLBE Heure: 11h30	Sous-traitant: ASTARUSCLE Technique de forage: Tarière mécanique Profondeur atteinte (m/sol): 5 Diamètre de forage (mm) et gaine: 80/110	Confection d'échantillon : me Sous échantillons :	BGP 105/10 oyen -	
Localisation du sond X:1841225.403 Y Projection:CC46 Z (sol) - m NGF: 2	′ : 5195576.087	Analyses de terrain: PID Réf. Matériel: PID LYON n°2 *mesure PID de l'air ambiant au poste d'échantillonnage: 0 ppmV	Préparation de l'échantillon :		
	d'un piézomètre proche NS (m/sol) : NC	Doublons : non	truelle / pelle à main /autre Conditionnement des échantillons :		
Sondage pour échan	<u>itillons témoins</u> : non	<u>Laboratoire</u> : AGROLAB			
Remarques :	-	Date d'envoi au laboratoire : 19/02/2021	gla	cière	

			<u>Laboratoire</u> : AGROLAB		Conservation des échantillons :			
marques	3:	-	Date d'envoi au laboratoire	: 19/02/2021	glacière			
Prof.		COUPE GEOL						
(m)	Lithologie	Description	Venues d'eau / humidité des sols	Observ Corps ét	ations trangers	Analyses de terrain	N°	
0.40		Terre végétale Sable limoneux avec gal Marron à ocre	ets /			0ppmV	BGP9(0- 1m)	
1.20		Sable graveleux et galets à ocre	s / Orange			0ppmV	BGP9(1- 2m)	
2.40						0ppmV	BGP9(2. 2-3.2m)	
3.60		Sable graveleux et galets	s / Beige			0ppmV	BGP9(3 2-4.2m)	
4.40		Sable graveleux et galets foncé	s / Marron			0ppmV	BGP9(4 2-5m)	
	1					I	1	

Annexe 2. Bordereaux d'analyse des sols

Cette annexe contient 85 pages

sont identifiées par le symbole " *) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

BURGEAP (LYON 69) Monsieur Clément BERRY 143 Avenue de Verdun 92130 ISSY-LES-MOULINEAUX **FRANCE**

> Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361954

n° Cde 1016265 BC21-981 / CSSPCE210146 - ITM

N° échant. 361954 Solide / Eluat

Date de validation 19.02.2021 Prélèvement 19.02.2021 15:44

		Unité		Résultat	Quant.	Résultat %	Méthode
Lixiviation							
Fraction >4mm (EN12457-2)		% Ms		13,7	0,1		Selon norme lixiviation
Lixiviation (EN 12457-2)			•				NF EN 12457-2
Masse brute Mh pour lixiviation	*)	g	0	100	1		Selon norme lixiviation
Volume de lixiviant L ajouté pour l'extraction	*)	ml		900	1		Selon norme lixiviation
Prétraitement des échantillor	าร						
Masse échantillon total inférieure à 2 kg		kg	0	0,74	0		
Prétraitement de l'échantillon			٥				Conforme à NEN-EN 16179
Broyeur à mâchoires			٥				méthode interne
Matière sèche		%	٥	89,3	0,01	+/- 1	NEN-EN15934; EN12880
Calcul des Fractions solubles	3						

Antimoine cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Arsenic cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Baryum cumulé (var. L/S)	mg/kg Ms	0,15	0,1	Selon norme lixiviation
Cadmium cumulé (var. L/S)	mg/kg Ms	0 - 0,001	0,001	Selon norme lixiviation
Chlorures cumulé (var. L/S)	mg/kg Ms	27	1	Selon norme lixiviation
Chrome cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02	Selon norme lixiviation
COT cumulé (var. L/S)	mg/kg Ms	40	10	Selon norme lixiviation
Cuivre cumulé (var. L/S)	mg/kg Ms	0,02	0,02	Selon norme lixiviation
Fluorures cumulé (var. L/S)	mg/kg Ms	8,0	1	Selon norme lixiviation
Fraction soluble cumulé (var. L/S) *)	mg/kg Ms	0 - 1000	1000	Selon norme lixiviation
Indice phénol cumulé (var. L/S)	mg/kg Ms	0 - 0,1	0,1	Selon norme lixiviation
Mercure cumulé (var. L/S)	mg/kg Ms	0 - 0,0003	0,0003	Selon norme lixiviation
Molybdène cumulé (var. L/S)	mg/kg Ms	0,09	0,05	Selon norme lixiviation
Nickel cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Plomb cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Sélénium cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Sulfates cumulé (var. L/S)	mg/kg Ms	410	50	Selon norme lixiviation

Spécification des échantillons	5	GP1 (0-1m)	Limite	Incert.	
	Unité	Résultat	Quant.	Résultat %	Méthode
Lixiviation	ı				
Fraction >4mm (EN12457-2)	% Ms	13,7	0,1		Selon norme lixiviation
Lixiviation (EN 12457-2)		•			NF EN 12457-2
Masse brute Mh pour lixiviation	*) g	° 100	1		Selon norme lixiviation
Volume de lixiviant L ajouté pour l'extraction	^{n *)} ml	900	1		Selon norme lixiviation
Prétraitement des échantillo	ns				
Masse échantillon total inférieure à 2 kg	kg	° 0,74	0		
Prétraitement de l'échantillon		0			Conforme à NEN-EN 1617
Broyeur à mâchoires		0			méthode interne
Matière sèche	%	° 89,3	0,01	+/- 1	NEN-EN15934; EN1288
Calcul des Fractions soluble	es				
Antimoine cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Arsenic cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Baryum cumulé (var. L/S)	*) mg/kg Ms	0,15	0,1		Selon norme lixiviation
Cadmium cumulé (var. L/S)	*) mg/kg Ms	0 - 0,001	0,001		Selon norme lixiviation
Chlorures cumulé (var. L/S)	*) mg/kg Ms	27	1		Selon norme lixiviation
Chrome cumulé (var. L/S)	*) mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation
COT cumulé (var. L/S)	*) mg/kg Ms	40	10		Selon norme lixiviation
Cuivre cumulé (var. L/S)	*) mg/kg Ms	0,02	0,02		Selon norme lixiviation
Fluorures cumulé (var. L/S)	*) mg/kg Ms	8,0	1		Selon norme lixiviation
Fraction soluble cumulé (var. L/S)	*) mg/kg Ms	0 - 1000	1000		Selon norme lixiviation
Indice phénol cumulé (var. L/S)	*) mg/kg Ms	0 - 0,1	0,1		Selon norme lixiviation
Mercure cumulé (var. L/S)	*) mg/kg Ms	0 - 0,0003	0,0003		Selon norme lixiviation
Molybdène cumulé (var. L/S)	*) mg/kg Ms	0,09	0,05		Selon norme lixiviation
Nickel cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Plomb cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Sélénium cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Sulfates cumulé (var. L/S)	*) mg/kg Ms	410	50		Selon norme lixiviation
Zinc cumulé (var. L/S)	*) mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation
Analyses Physico-chimique	S				
pH-H2O		° 8,2	0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)
COT Carbone Organique Total	mg/kg Ms	2000	1000	+/- 16	conforme ISO 10694 (2008

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361954

Spécification des échantillons **BGP1 (0-1m)**

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Minéralisation à l'eau régale	۰				NF-EN 16174; NF EN 1365 (déchets)
Métaux					
Arsenic (As)	mg/kg Ms	6,3	1	+/- 15	Conforme à EN-ISO 11885, 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, 16174
Chrome (Cr)	mg/kg Ms	21	0,2	+/- 12	Conforme à EN-ISO 11885, 16174
Cuivre (Cu)	mg/kg Ms	9,2	0,2	+/- 20	Conforme à EN-ISO 11885, 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et 1 16174
Nickel (Ni)	mg/kg Ms	12	0,5	+/- 11	Conforme à EN-ISO 11885, 16174
Plomb (Pb)	mg/kg Ms	15	0,5	+/- 11	Conforme à EN-ISO 11885, 16174
Zinc (Zn)	mg/kg Ms	34	1	+/- 22	Conforme à EN-ISO 11885, 16174
Hydrocarbures Aromatiques	s Polycycliques (l	ISO)			10174
Naphtalène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 161
Acénaphtylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 161
Acénaphtène	mg/kg Ms	0,13	0,05	+/- 11	équivalent à NF EN 161
Fluorène	mg/kg Ms	0,18	0,05	+/- 46	équivalent à NF EN 161
Phénanthrène	mg/kg Ms	0,57	0,05	+/- 20	équivalent à NF EN 161
Anthracène	mg/kg Ms	0,18	0,05	+/- 24	équivalent à NF EN 161
Fluoranthène	mg/kg Ms	0,45	0,05	+/- 17	équivalent à NF EN 161
Pyrène	mg/kg Ms	0,37	0,05	+/- 19	équivalent à NF EN 161
Benzo(a)anthracène	mg/kg Ms	0,20	0,05	+/- 14	équivalent à NF EN 161
Chrysène	mg/kg Ms	0,17	0,05	+/- 14	équivalent à NF EN 161
Benzo(b)fluoranthène	mg/kg Ms	0,16	0,05	+/- 12	équivalent à NF EN 161
Benzo(k)fluoranthène	mg/kg Ms	0,085	0,05	+/- 14	équivalent à NF EN 161
Benzo(a)pyrène	mg/kg Ms	0,16	0,05	+/- 14	équivalent à NF EN 161
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05	.,	équivalent à NF EN 161
Benzo(g,h,i)pérylène	mg/kg Ms	0,095	0,05	+/- 14	équivalent à NF EN 161
Indéno(1,2,3-cd)pyrène	mg/kg Ms	0,091	0,05	+/- 17	équivalent à NF EN 161
HAP (6 Borneff) - somme	mg/kg Ms	1,04	0,00	.,	équivalent à NF EN 161
Somme HAP (VROM)	mg/kg Ms	2,00 ×)			équivalent à NF EN 161
HAP (EPA) - somme	mg/kg Ms	2,84 ×)			équivalent à NF EN 161
Composés aromatiques					
Benzène	mg/kg Ms	<0,050	0,05		Conforme à ISO 2215
Toluène	mg/kg Ms	<0,050	0,05		Conforme à ISO 2215
Ethylbenzène	mg/kg Ms	<0,050	0,05		Conforme à ISO 2215
m,p-Xylène	mg/kg Ms	<0,10	0,1		Conforme à ISO 2215
o-Xylène	mg/kg Ms	<0,050	0,05		Conforme à ISO 2215
Somme Xylènes	mg/kg Ms	n.d.			Conforme à ISO 2215
BTEX total	*) mg/kg Ms	n.d.			Conforme à ISO 221
Hydrocarbures totaux (ISO)					
Hydrocarbures totaux C10-C40	mg/kg Ms	25,5	20	+/- 21	ISO 16703
Fraction C10-C12	*) mg/kg Ms	<4,0	4		ISO 16703
Fraction C12-C16	*) mg/kg Ms	<4,0	4		ISO 16703
Fraction C16-C20	*) mg/kg Ms	4,4	2	+/- 21	ISO 16703
Fraction C20-C24	*) mg/kg Ms	3,8	2	+/- 21	ISO 16703
Fraction C24-C28	*) mg/kg Ms	3,2	2	+/- 21	ISO 16703

RvA L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361954

Spécification des échantillons **BGP1 (0-1m)**

<u>.</u>	•	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
symbole " *)	Fraction C28-C32	mg/kg Ms	3,7	2		ISO 16703
oc		*) mg/kg Ms	3,7	2	+/- 21	ISO 16703
Ę		*) mg/kg Ms	2,6	2	+/- 21	ISO 16703
	Polychlorobiphényles	gg	2,0		17 21	100 107 00
a۲	Somme 6 PCB	mg/kg Ms	n.d.			NEN-EN 16167
d Se	Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.			NEN-EN 16167 NEN-EN 16167
fiée	PCB (28)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
ənti	PCB (52)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
ġ	PCB (101)	mg/kg Ms	<0,001	0.001		NEN-EN 16167
ont	PCB (118)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
SS	PCB (138)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
itée	PCB (153)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
réd	PCB (180)	mg/kg Ms	<0,001	0.001		NEN-EN 16167
activités non accréditées sont identifiées par le	Analyses sur éluat après lixivi		,		1	,
on	L/S cumulé	ml/g	10,0	0,1		Selon norme lixiviation
S	Conductivité électrique	µS/cm	190	5	+/- 10	Selon norme lixiviation
vité	pH	μονοιτι	8,4	0	+/- 5	Selon norme lixiviation
acti	Température	°C	20,1	0	., 0	Selon norme lixiviation
es	Analyses Physico-chimiques					
es	Résidu à sec	mg/l	<100	100		Equivalent à NF EN ISO 15216
Seules les	Fluorures (F)	mg/l	0,8	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
17.	Indice phénol	mg/l	<0,010	0,01		NEN-EN 16192
:20	Chlorures (CI)	mg/l	2,7	0,1	+/- 10	Conforme à ISO 15923-1
)25	Sulfates (SO4)	mg/l	41	5	+/- 10	Conforme à ISO 15923-1
17025:2017.	COT	mg/l	4,0	1	+/- 10	conforme EN 16192
Ξ	Métaux sur éluat					
dans ce document sont accréditées selon EN ISO/IEC	Antimoine (Sb)	µg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Ш	Arsenic (As)	µg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
elon	Baryum (Ba)	μg/l	15	10	+/- 10	Conforme à EN-ISO 17294-2 (2004)
ées s	Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
rédite	Chrome (Cr)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
acci	Cuivre (Cu)	μg/l	2,3	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)
ont	Mercure (Hg)	μg/l	<0,03	0,03		NEN-EN 1483 (2007)
ent s	Molybdène (Mo)	μg/l	8,6	5	+/- 10	Conforme à EN-ISO 17294-2 (2004)
cnmo	Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
ë do	Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
ลทร ต	Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
se de	Zinc (Zn)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. Le calcul de l'incertitude de mesure combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l'expression de l'incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d'élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

(2004)

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361954

Spécification des échantillons

BGP1 (0-1m)

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 22.02.2021 Fin des analyses: 26.02.2021

Chargée relation clientèle

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156

Lognenet

sont identifiées par le symbole " *) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Your labs. Your service.

BURGEAP (LYON 69) Monsieur Clément BERRY 143 Avenue de Verdun 92130 ISSY-LES-MOULINEAUX **FRANCE**

> Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361955

n° Cde 1016265 BC21-981 / CSSPCE210146 - ITM

N° échant. 361955 Solide / Eluat

Date de validation 19.02.2021 Prélèvement 19.02.2021 15:44

	Office		Nesulial	Quant.	Resultat /6	Metriode
Lixiviation						
Fraction >4mm (EN12457-2)	% Ms		8,1	0,1		Selon norme lixiviation
Lixiviation (EN 12457-2)		۰				NF EN 12457-2
Masse brute Mh pour lixiviation	*) g	۰	100	1		Selon norme lixiviation
Volume de lixiviant L ajouté pour l'extraction	*) ml		900	1		Selon norme lixiviation
Prétraitement des échantillon	S					
Masse échantillon total inférieure à 2 kg	kg	•	0,59	0		
Prétraitement de l'échantillon		۰	·			Conforme à NEN-EN 16179
Broyeur à mâchoires		۰				méthode interne
Matière sèche	%	۰	87,4	0,01	+/- 1	NEN-EN15934; EN12880
Calcul des Fractions solubles	;					

mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
mg/kg Ms	0 - 0,1	0,1	Selon norme lixiviation
mg/kg Ms	0 - 0,001	0,001	Selon norme lixiviation
mg/kg Ms	23	1	Selon norme lixiviation
mg/kg Ms	0 - 0,02	0,02	Selon norme lixiviation
mg/kg Ms	0 - 10	10	Selon norme lixiviation
mg/kg Ms	0,04	0,02	Selon norme lixiviation
mg/kg Ms	0 - 1	1	Selon norme lixiviation
mg/kg Ms	0 - 1000	1000	Selon norme lixiviation
mg/kg Ms	0 - 0,1	0,1	Selon norme lixiviation
mg/kg Ms	0 - 0,0003	0,0003	Selon norme lixiviation
mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
mg/kg Ms	0 - 50	50	Selon norme lixiviation
mg/kg Ms	0,11	0,02	Selon norme lixiviation
	mg/kg Ms	0 mg/kg Ms 0 - 0,05 0 mg/kg Ms 0 - 0,01 0 mg/kg Ms 0 - 0,001 0 mg/kg Ms 23 0 mg/kg Ms 0 - 0,02 0 mg/kg Ms 0 - 10 0 mg/kg Ms 0 - 1 0 mg/kg Ms 0 - 1000 0 mg/kg Ms 0 - 0,01 0 mg/kg Ms 0 - 0,003 0 mg/kg Ms 0 - 0,05 0 mg/kg Ms 0 - 0,05	0 mg/kg Ms 0 - 0,05 0,05 0 mg/kg Ms 0 - 0,1 0,1 0 mg/kg Ms 0 - 0,001 0,001 0 mg/kg Ms 23 1 0 mg/kg Ms 0 - 0,02 0,02 0 mg/kg Ms 0 - 10 10 0 mg/kg Ms 0 - 1 1 0 mg/kg Ms 0 - 1000 1000 0 mg/kg Ms 0 - 0,01 0,1 0 mg/kg Ms 0 - 0,003 0,0003 0 mg/kg Ms 0 - 0,05 0,05 0 mg/kg Ms 0 - 0,05 0,05

•			Limite	Incert.	
	Unité	Résultat	Quant.	Résultat %	Méthode
Lixiviation				1	
Fraction >4mm (EN12457-2)	% Ms	8,1	0,1		Selon norme lixiviation
Lixiviation (EN 12457-2)	*\	° 100			NF EN 12457-2
Masse brute Mh pour lixiviation	*) g	100	1		Selon norme lixiviation
Volume de lixiviant L ajouté pour l'extracti	1	900	1		Selon norme lixiviation
Prétraitement des échantill	ons				
Masse échantillon total inférieure à 2 kg	kg	° 0,59	0		
Prétraitement de l'échantillon		0			Conforme à NEN-EN 1617
Broyeur à mâchoires		0			méthode interne
Matière sèche	%	° 87,4	0,01	+/- 1	NEN-EN15934; EN1288
Calcul des Fractions solub	les				
Antimoine cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Arsenic cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Baryum cumulé (var. L/S)	*) mg/kg Ms	0 - 0,1	0,1		Selon norme lixiviation
Cadmium cumulé (var. L/S)	*) mg/kg Ms	0 - 0,001	0,001		Selon norme lixiviation
Chlorures cumulé (var. L/S)	*) mg/kg Ms	23	1		Selon norme lixiviation
Chrome cumulé (var. L/S)	*) mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation
COT cumulé (var. L/S)	*) mg/kg Ms	0 - 10	10		Selon norme lixiviation
Cuivre cumulé (var. L/S)	*) mg/kg Ms	0,04	0,02		Selon norme lixiviation
Fluorures cumulé (var. L/S)	*) mg/kg Ms	0 - 1	1		Selon norme lixiviation
Fraction soluble cumulé (var. L/S)	*) mg/kg Ms	0 - 1000	1000		Selon norme lixiviation
Indice phénol cumulé (var. L/S)	*) mg/kg Ms	0 - 0,1	0,1		Selon norme lixiviation
Mercure cumulé (var. L/S)	*) mg/kg Ms	0 - 0,0003	0,0003		Selon norme lixiviation
Molybdène cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Nickel cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Plomb cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Sélénium cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Sulfates cumulé (var. L/S)	*) mg/kg Ms	0 - 50	50		Selon norme lixiviation
Zinc cumulé (var. L/S)	*) mg/kg Ms	0,11	0,02		Selon norme lixiviation
Analyses Physico-chimique	es				
pH-H2O		° 5,9	0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)
COT Carbone Organique Total	mg/kg Ms	<1000	1000		conforme ISO 10694 (200

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361955

Spécification des échantillons **BGP2 (1-2m)**

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Minéralisation à l'eau régale	0				NF-EN 16174; NF EN 13657 (déchets)
Métaux		,			
Arsenic (As)	mg/kg Ms	9,5	1	+/- 15	Conforme à EN-ISO 11885, E
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, E 16174
Chrome (Cr)	mg/kg Ms	37	0,2	+/- 12	Conforme à EN-ISO 11885, E 16174
Cuivre (Cu)	mg/kg Ms	29	0,2	+/- 20	Conforme à EN-ISO 11885, E 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et E 16174
Nickel (Ni)	mg/kg Ms	39	0,5	+/- 11	Conforme à EN-ISO 11885, E 16174
Plomb (Pb)	mg/kg Ms	17	0,5	+/- 11	Conforme à EN-ISO 11885, E 16174
Zinc (Zn)	mg/kg Ms	43	1	+/- 22	Conforme à EN-ISO 11885, E 16174
Hydrocarbures Aromatiques	Polycycliques (IS	SO)			
Naphtalène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Acénaphtylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Acénaphtène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Fluorène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Phénanthrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
	mg/kg Ms		0,05		équivalent à NF EN 1618
Benzo(a)anthracène		<0,050			·
Chrysène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Benzo(a)pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
HAP (6 Borneff) - somme	mg/kg Ms	n.d.			équivalent à NF EN 1618
Somme HAP (VROM)	mg/kg Ms	n.d.			équivalent à NF EN 1618
HAP (EPA) - somme	mg/kg Ms	n.d.			équivalent à NF EN 1618
Composés aromatiques					
Benzène	mg/kg Ms	<0,050	0,05		Conforme à ISO 2215
Toluène	mg/kg Ms	<0,050	0,05		Conforme à ISO 2215
Ethylbenzène	mg/kg Ms	<0,050	0,05		Conforme à ISO 2215
m,p-Xylène	mg/kg Ms	<0,10	0,1		Conforme à ISO 2215
o-Xylène	mg/kg Ms	<0,050	0,05		Conforme à ISO 2215
Somme Xylènes	mg/kg Ms	n.d.			Conforme à ISO 2215
BTEX total	*) mg/kg Ms	n.d.			Conforme à ISO 2215
Hydrocarbures totaux (ISO)					
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20		ISO 16703
Fraction C10-C12	*) mg/kg Ms	<4,0	4		ISO 16703
Fraction C12-C16	*) mg/kg Ms	<4,0	4		ISO 16703
Fraction C16-C20	*) mg/kg Ms	<2,0	2		ISO 16703
Fraction C20-C24	*) mg/kg Ms	<2,0	2		ISO 16703
	*) mg/kg Ms	<2,0	2		ISO 16703

page 2 de 4 **RvA** L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361955

Spécification des échantillons BGP2 (1-2m)

*		Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
symbole " *)	Fraction C28-C32	mg/kg Ms	<2,0	2		ISO 16703
g	Fraction C32-C36	mg/kg Ms	<2,0	2		ISO 16703
λyπ	Fraction C36-C40	*) mg/kg Ms	<2,0	2		ISO 16703
<u>e</u>	Polychlorobiphényles					
par	Somme 6 PCB	mg/kg Ms	n.d.			NEN-EN 16167
es	Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.			NEN-EN 16167
iifié	PCB (28)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
ent	PCB (52)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
t id	PCB (101)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
son	PCB (118)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
Se	PCB (138)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
itée	PCB (153)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
réd	PCB (180)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
acc	Analyses sur éluat après lixivi			, - ,		
on	L/S cumulé	ml/g	10,0	0,1		Selon norme lixiviation
S	Conductivité électrique	μS/cm	16,8	5	+/- 10	Selon norme lixiviation
лté	pH	рологи	7,2	0	+/- 5	Selon norme lixiviation
cţì	Température	°C	20,0	0	17 3	Selon norme lixiviation
Seules les activités non accréditées sont identifiées par le	Analyses Physico-chimiques		20,0			Colon Holling librariation
Sele	Résidu à sec		<100	100		Equivalent à NF EN ISO 15216
alle	Fluorures (F)	mg/l		100		Conforme à ISO 10359-1, conforme
	Fluorules (F)	mg/l	<0,1	0,1		à EN 16192
17.	Indice phénol	mg/l	<0,010	0,01		NEN-EN 16192
.50	Chlorures (CI)	mg/l	2,3	0,1	+/- 10	Conforme à ISO 15923-1
)25	Sulfates (SO4)	mg/l	<5,0	5		Conforme à ISO 15923-1
17025:2017.	COT	mg/l	<1,0	1		conforme EN 16192
	Métaux sur éluat					
SO/I	Antimoine (Sb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
E N	Arsenic (As)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
elon	Baryum (Ba)	μg/l	<10	10		Conforme à EN-ISO 17294-2 (2004)
es s	Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
rédité	Chrome (Cr)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
accı	Cuivre (Cu)	μg/l	3,5	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)
ont	Mercure (Hg)	μg/l	<0,03	0,03		NEN-EN 1483 (2007)
ent s	Molybdène (Mo)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
cnme	Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
e do	Plomb (Pb)	µg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
ากร c	Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
ées dans ce document sont accréditées selon EN ISO/IEC	Zinc (Zn)	μg/l	11	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé.
Le calcul de l' incertitude de mesure combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d' élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

es activités

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361955

Spécification des échantillons BGP2 (1-2m)

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 22.02.2021 Fin des analyses: 26.02.2021

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156 Chargée relation clientèle

Lognenet

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

BURGEAP (LYON 69) Monsieur Clément BERRY 143 Avenue de Verdun 92130 ISSY-LES-MOULINEAUX **FRANCE**

> Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361956

sont identifiées par le symbole " *) ". n° Cde 1016265 BC21-981 / CSSPCE210146 - ITM

N° échant. 361956 Solide / Eluat

Date de validation 19.02.2021 Prélèvement 19.02.2021 15:44

Prélèvement par: Client

Spécification des échantillons **BGP3 (0-1m)**

	Unité	Résultat	Quant.	Résultat %	Méthode
Lixiviation					
Fraction >4mm (EN12457-2)	% Ms	3.3	0,1		Selon norme lixiviation
Lixiviation (EN 12457-2)	701110	•	0, 1		NF EN 12457-2
Masse brute Mh pour lixiviation) g	° 100	1		Selon norme lixiviation
Volume de lixiviant L ajouté pour l'extraction *	ml	900	1		Selon norme lixiviation
Prétraitement des échantillons	· ;				
Masse échantillon total inférieure à 2 kg	kg	° 0,58	0		
Prétraitement de l'échantillon		0			Conforme à NEN-EN 16179
Matière sèche	%	° 88,6	0,01	+/- 1	NEN-EN15934; EN12880
Calcul des Fractions solubles	'		,		
Antimoine cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Arsenic cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Baryum cumulé (var. L/S)	mg/kg Ms	0 - 0,1	0,1		Selon norme lixiviation
Cadmium cumulé (var. L/S)	mg/kg Ms	0 - 0,001	0,001		Selon norme lixiviation
Chlorures cumulé (var. L/S)	mg/kg Ms	8,0	1		Selon norme lixiviation
Chrome cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation
COT cumulé (var. L/S)	mg/kg Ms	0 - 10	10		Selon norme lixiviation
Cuivre cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation
Fluorures cumulé (var. L/S)	mg/kg Ms	8,0	1		Selon norme lixiviation
Fraction soluble cumulé (var. L/S)	mg/kg Ms	0 - 1000	1000		Selon norme lixiviation
Indice phénol cumulé (var. L/S)	mg/kg Ms	0 - 0,1	0,1		Selon norme lixiviation
Mercure cumulé (var. L/S)	mg/kg Ms	0 - 0,0003	0,0003		Selon norme lixiviation
Molybdène cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Nickel cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Plomb cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Sélénium cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Sulfates cumulé (var. L/S)	mg/kg Ms	0 - 50	50		Selon norme lixiviation
Zinc cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation
Analyses Physico-chimiques					

8,6

<1000

0,1

1000

+/- 10

I imite

Incert

Minéralisation à l'eau régale

COT Carbone Organique Total

Directeur ppa. Marc van Gelder Dr. Paul Wimmer

Prétraitement pour analyses des métaux

es activités

rapportées dans ce document sont accréditées selon EN ISO/IEC 17025:2017. Seules les activités non accréditées

Cf. NEN-ISO 10390 (sol

uniquement)

conforme ISO 10694 (2008)

NF-EN 16174; NF EN 13657

(déchets)

pH-H2O

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361956

Spécification des échantillons **BGP3 (0-1m)**

	Specification des echantilloris	BGF3 (0-1111)				
* .		Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
= O	Métaux					
Seules les activités non accréditées sont identifiées par le symbole	Arsenic (As)	mg/kg Ms	19	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
le sy	Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, EN 16174
s par	Chrome (Cr)	mg/kg Ms	29	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
ifiées	Cuivre (Cu)	mg/kg Ms	22	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
ident	Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
sont	Nickel (Ni)	mg/kg Ms	42	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
ées	Plomb (Pb)	mg/kg Ms	15	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
rédit	Zinc (Zn)	mg/kg Ms	54	1	+/- 22	Conforme à EN-ISO 11885, EN 16174
acc	Hydrocarbures Aromatiques Po	olycycliques (ISO)				
on	Naphtalène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
S	Acénaphtylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
vité	Acénaphtène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
icţi	Fluorène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
ŝ	Phénanthrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
<u>e</u>	Anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
ě	Fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Set	Pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
	Benzo(a)anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
201	Chrysène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
5:5	Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
702	Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
7	Benzo(a)pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Щ	Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
ò		mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
9	Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Ш	Indéno(1,2,3-cd)pyrène	mg/kg Ms		0,05		équivalent à NF EN 16181
lon	HAP (6 Borneff) - somme		n.d.			
se	Somme HAP (VROM)	mg/kg Ms	n.d.			équivalent à NF EN 16181
es	HAP (EPA) - somme	mg/kg Ms	n.d.			équivalent à NF EN 16181
sont accréditées selon EN ISO/IEC 17025:2017.	Composés aromatiques					
cré	Benzène	mg/kg Ms	<0,050	0,05		Conforme à ISO 22155
ac	Toluène	mg/kg Ms	<0,050	0,05		Conforme à ISO 22155
ont	Ethylbenzène	mg/kg Ms	<0,050	0,05		Conforme à ISO 22155
ıt S(m,p-Xylène	mg/kg Ms	<0,10	0,1		Conforme à ISO 22155
	o-Xylène	mg/kg Ms	<0,050	0,05		Conforme à ISO 22155
ű	Somme Xylènes	mg/kg Ms	n.d.			Conforme à ISO 22155
documer	BTEX total	mg/kg Ms	n.d.			Conforme à ISO 22155
	Hydrocarbures totaux (ISO)					
ıns	Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20		ISO 16703
g		mg/kg Ms	<4,0	4		ISO 16703
ées		mg/kg Ms	<4,0	4		ISO 16703
ort		mg/kg Ms	<2,0	2		ISO 16703
ddε		mg/kg Ms	<2,0	2		ISO 16703
รา	Fraction C24-C28	mg/kg Ms	<2,0	2		ISO 16703
activités rapportées dans ce	Fraction C28-C32	mg/kg Ms	<2,0	2		ISO 16703
ctị≤		mg/kg Ms	<2,0	2		ISO 16703
ā	TAURUT OUL OU	g/ 1.9 1.1.5	∖∠, ∪			100 10700

RvA L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361956

Spécification des échantillons **BGP3 (0-1m)**

	Specification des echantilloris	BGP3 (0-1111)				
* .		Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
<u>e</u>	Fraction C36-C40	*) mg/kg Ms	<2,0	2		ISO 16703
symbole	Polychlorobiphényles					
syr	Somme 6 PCB	mg/kg Ms	n.d.			NEN-EN 16167
<u>e</u>	Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.			NEN-EN 16167
pal	PCB (28)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
es	PCB (52)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
itifië	PCB (101)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
den	PCB (118)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
n E	PCB (138)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
SO	PCB (153)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
ées	PCB (180)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
git	Analyses sur éluat après lixiv	iation				
Scré,	L/S cumulé	ml/g	10,0	0,1		Selon norme lixiviation
ă	Conductivité électrique	μS/cm	65,0	5	+/- 10	Selon norme lixiviation
Г	рН		7,9	0	+/- 5	Selon norme lixiviation
tés	Température	°C	19,5	0		Selon norme lixiviation
ίξ	Analyses Physico-chimiques	sur éluat				
s ac	Résidu à sec	mg/l	<100	100		Equivalent à NF EN ISO 15216
Seules les activités non accréditées sont identifiées par le	Fluorures (F)	mg/l	0,8	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
elle	Indice phénol	mg/l	<0,010	0,01		NEN-EN 16192
	Chlorures (CI)	mg/l	0,8	0,1	+/- 10	Conforme à ISO 15923-1
717	Sulfates (SO4)	mg/l	<5,0	5		Conforme à ISO 15923-1
5:2	COT	mg/l	<1,0	1		conforme EN 16192
029	Métaux sur éluat					
EN ISO/IEC 17025:2017.	Antimoine (Sb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
0/E	Arsenic (As)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
<u>N</u>	Baryum (Ba)	μg/l	<10	10		Conforme à EN-ISO 17294-2 (2004)
lon E	Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
s se	Chrome (Cr)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
ditée	Cuivre (Cu)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
cré	Mercure (Hg)	μg/l	<0,03	0,03		NEN-EN 1483 (2007)
nt ac	Molybdène (Mo)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
nt so	Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
umer	Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
ce document sont accréditées selon l	Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
s ce	Zinc (Zn)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. Le calcul de l' incertitude de mesure combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d'élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

es activités

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361956

Spécification des échantillons BGP3 (0-1m)

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 22.02.2021 Fin des analyses: 26.02.2021

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156 Chargée relation clientèle

sont identifiées par le symbole " *) ".

es activités rapportées dans ce document sont accréditées selon EN ISO/IEC 17025:2017. Seules les activités non accréditées

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Your labs. Your service.

BURGEAP (LYON 69) Monsieur Clément BERRY 143 Avenue de Verdun 92130 ISSY-LES-MOULINEAUX FRANCE

> Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361957

n° Cde 1016265 BC21-981 / CSSPCE210146 - ITM

N° échant. 361957 Solide / Eluat

 Date de validation
 19.02.2021

 Prélèvement
 19.02.2021 15:44

Prélèvement par: Client

Spécification des échantillons BGP4 (0-1m)

	Unité	Résultat	Quant.	Résultat %	Méthode
Lixiviation					
Fraction >4mm (EN12457-2)	% Ms	7,6	0,1		Selon norme lixiviation
Lixiviation (EN 12457-2)		•			NF EN 12457-2
Masse brute Mh pour lixiviation *)	g	° 100	1		Selon norme lixiviation
Volume de lixiviant L ajouté pour l'extraction *)	ml	900	1		Selon norme lixiviation
Prétraitement des échantillons					
Masse échantillon total inférieure à 2 kg	kg	° 0,65	0		
Prétraitement de l'échantillon		۰			Conforme à NEN-EN 16179
Broyeur à mâchoires		•			méthode interne
Matière sèche	%	° 88,5	0,01	+/- 1	NEN-EN15934; EN12880
Calcul des Fractions solubles					
Antimoine cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Arsenic cumulé (var. L/S)	mg/kg Ms	0,12	0,05		Selon norme lixiviation
Baryum cumulé (var. L/S)	mg/kg Ms	0 - 0,1	0,1		Selon norme lixiviation
Cadmium cumulé (var. L/S)	mg/kg Ms	0 - 0,001	0,001		Selon norme lixiviation
Chlorures cumulé (var. L/S)	mg/kg Ms	19	1		Selon norme lixiviation
Chrome cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation
COT cumulé (var. L/S)	mg/kg Ms	21	10		Selon norme lixiviation
Cuivre cumulé (var. L/S)	mg/kg Ms	0,02	0,02		Selon norme lixiviation
Fluorures cumulé (var. L/S) *)	mg/kg Ms	20	1		Selon norme lixiviation
,	mg/kg Ms	0 - 1000	1000		Selon norme lixiviation
Indice phénol cumulé (var. L/S)	mg/kg Ms	0 - 0,1	0,1		Selon norme lixiviation
Mercure cumulé (var. L/S)	mg/kg Ms	0 - 0,0003	0,0003		Selon norme lixiviation
Molybdène cumulé (var. L/S)	mg/kg Ms	0,12	0,05		Selon norme lixiviation
Nickel cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Plomb cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Sélénium cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Sulfates cumulé (var. L/S)	mg/kg Ms	470	50		Selon norme lixiviation
Zinc cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation

8,9

<1000

0,1

1000

+/- 10

Limite

Incert.

Prétraitement pour analyses des métaux

Analyses Physico-chimiques

COT Carbone Organique Total

Cf. NEN-ISO 10390 (sol

uniquement)

conforme ISO 10694 (2008)

pH-H2O

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361957

Spécification des échantillons **BGP4 (0-1m)**

Specification des echantillons	DGF4 (t	,			
	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Minéralisation à l'eau régale	0				NF-EN 16174; NF EN 1365 (déchets)
Métaux					
Arsenic (As)	mg/kg Ms	7,6	1	+/- 15	Conforme à EN-ISO 11885, 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, 16174
Chrome (Cr)	mg/kg Ms	36	0,2	+/- 12	Conforme à EN-ISO 11885, 16174
Cuivre (Cu)	mg/kg Ms	18	0,2	+/- 20	Conforme à EN-ISO 11885, 16174
Mercure (Hg)	mg/kg Ms	0,07	0,05	+/- 20	Conforme à ISO 16772 et 1 16174
Nickel (Ni)	mg/kg Ms	25	0,5	+/- 11	Conforme à EN-ISO 11885, 16174
Plomb (Pb)	mg/kg Ms	18	0,5	+/- 11	Conforme à EN-ISO 11885, 16174
Zinc (Zn)	mg/kg Ms	53	1	+/- 22	Conforme à EN-ISO 11885, 16174
Hydrocarbures Aromatiques	s Polycycliques (IS	SO)			
Naphtalène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 161
Acénaphtylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 161
Acénaphtène	mg/kg Ms	0,24	0,05	+/- 11	équivalent à NF EN 161
Fluorène	mg/kg Ms	0,28	0,05	+/- 46	équivalent à NF EN 161
Phénanthrène	mg/kg Ms	1,2	0,05	+/- 20	équivalent à NF EN 161
Anthracène	mg/kg Ms		0,05	+/- 24	équivalent à NF EN 161
	mg/kg Ms	0,49		+/- 17	équivalent à NF EN 161
Fluoranthène	mg/kg Ms	2,0	0,05		équivalent à NF EN 161
Pyrène		2,6	0,05	+/- 19	
Benzo(a)anthracène	mg/kg Ms	1,0	0,05	+/- 14	équivalent à NF EN 161
Chrysène	mg/kg Ms	0,82	0,05	+/- 14	équivalent à NF EN 161
Benzo(b)fluoranthène	mg/kg Ms	1,4	0,05	+/- 12	équivalent à NF EN 161
Benzo(k)fluoranthène	mg/kg Ms	0,64	0,05	+/- 14	équivalent à NF EN 161
Benzo(a)pyrène	mg/kg Ms	1,4	0,05	+/- 14	équivalent à NF EN 161
Dibenzo(a,h)anthracène	mg/kg Ms	0,18	0,05	+/- 15	équivalent à NF EN 161
Benzo(g,h,i)pérylène	mg/kg Ms	0,89	0,05	+/- 14	équivalent à NF EN 161
Indéno(1,2,3-cd)pyrène	mg/kg Ms	0,82	0,05	+/- 17	équivalent à NF EN 161
HAP (6 Borneff) - somme	mg/kg Ms	7,15			équivalent à NF EN 161
Somme HAP (VROM)	mg/kg Ms	9,26 ^{x)}			équivalent à NF EN 161
HAP (EPA) - somme	mg/kg Ms	14,0 ×)			équivalent à NF EN 161
Composés aromatiques					
Benzène	mg/kg Ms	<0,050	0,05		Conforme à ISO 2215
Toluène	mg/kg Ms	<0,050	0,05		Conforme à ISO 2215
Ethylbenzène	mg/kg Ms	<0,050	0,05		Conforme à ISO 2215
m,p-Xylène	mg/kg Ms	<0,10	0,1		Conforme à ISO 2215
o-Xylène	mg/kg Ms	<0,050	0,05		Conforme à ISO 2215
Somme Xylènes	mg/kg Ms	n.d.	0,00		Conforme à ISO 2215
BTEX total	*) mg/kg Ms	n.d.			Conforme à ISO 2215
Hydrocarbures totaux (ISO)	inging inc	mai			Gornomic a 100 22 in
Hydrocarbures totaux C10-C40	mg/kg Ms	73,4	20	+/- 21	ISO 16703
Fraction C10-C12	*) mg/kg Ms	<4,0	4		ISO 16703
Fraction C12-C16	*) mg/kg Ms	<4,0	4		ISO 16703
Fraction C16-C20	*) mg/kg Ms	9,3	2	+/- 21	ISO 16703
Fraction C20-C24	*) mg/kg Ms	14,0	2	+/- 21	ISO 16703
Fraction C24-C28	*) mg/kg Ms	15,0	2	+/- 21	ISO 16703

RvA L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361957

Spécification des échantillons **BGP4 (0-1m)**

	•	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode			
symbole " *)	Fraction C28-C32	mg/kg Ms	14	2		ISO 16703			
pole		mg/kg Ms	10,1	2	+/- 21	ISO 16703			
y		") mg/kg Ms	6,0	2	+/- 21	ISO 16703			
	Polychlorobiphényles	1 3 3 - 1	0,0		., 2.	100 101 00			
activités non accréditées sont identifiées par le	Somme 6 PCB	mg/kg Ms	n.d.			NEN-EN 16167			
d Se	Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.			NEN-EN 16167			
fiée	PCB (28)	mg/kg Ms	<0,001	0,001		NEN-EN 16167			
enti	PCB (52)	mg/kg Ms	<0,001	0,001		NEN-EN 16167			
ğ	PCB (101)	mg/kg Ms	<0,001	0.001		NEN-EN 16167			
io	PCB (118)	mg/kg Ms	<0,001	0,001		NEN-EN 16167			
SS	PCB (138)	mg/kg Ms	<0,001	0,001		NEN-EN 16167			
litée	PCB (153)	mg/kg Ms	<0,001	0,001		NEN-EN 16167			
réd	PCB (180)	mg/kg Ms	<0,001	0,001		NEN-EN 16167			
acc	Analyses sur éluat après lixivi	ation	, ,	•		,			
on	L/S cumulé	ml/g	10,0	0,1		Selon norme lixiviation			
S	Conductivité électrique	μS/cm	200	5	+/- 10	Selon norme lixiviation			
vité	pH	ролонт	10,3	0	+/- 5	Selon norme lixiviation			
acti	Température	°C	20,8	0		Selon norme lixiviation			
les s	Analyses Physico-chimiques		_0,0						
es	Résidu à sec	mg/l	<100	100		Equivalent à NF EN ISO 15216			
Seules les	Fluorures (F)	mg/l	2,0	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192			
17.	Indice phénol	mg/l	<0,010	0,01		NEN-EN 16192			
:20	Chlorures (CI)	mg/l	1,9	0,1	+/- 10	Conforme à ISO 15923-1			
)25	Sulfates (SO4)	mg/l	47	5	+/- 10	Conforme à ISO 15923-1			
17025:2017.	COT	mg/l	2,1	1	+/- 10	conforme EN 16192			
Ξ	Métaux sur éluat								
dans ce document sont accréditées selon EN ISO/IEC	Antimoine (Sb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)			
E N	Arsenic (As)	µg/l	12	5	+/- 10	Conforme à EN-ISO 17294-2 (2004)			
selon	Baryum (Ba)	μg/l	<10	10		Conforme à EN-ISO 17294-2 (2004)			
ées s	Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)			
rédite	Chrome (Cr)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)			
acci	Cuivre (Cu)	µg/l	2,4	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)			
ont	Mercure (Hg)	μg/l	<0,03	0,03		NEN-EN 1483 (2007)			
ent s	Molybdène (Mo)	μg/l	12	5	+/- 10	Conforme à EN-ISO 17294-2 (2004)			
cnmo	Nickel (Ni)	µg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)			
ë do	Plomb (Pb)	µg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)			
ลทร ต	Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)			
se de	Zinc (Zn)	µg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)			

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. Le calcul de l'incertitude de mesure combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l'expression de l'incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d'élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

(2004)

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361957

Spécification des échantillons

BGP4 (0-1m)

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 22.02.2021 Fin des analyses: 26.02.2021

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

M. Hognenet

AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156 Chargée relation clientèle

sont identifiées par le symbole " *) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

BURGEAP (LYON 69) Monsieur Clément BERRY 143 Avenue de Verdun 92130 ISSY-LES-MOULINEAUX **FRANCE**

> Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361958

1016265 BC21-981 / CSSPCE210146 - ITM n° Cde

N° échant. 361958 Solide / Eluat

Date de validation 19.02.2021 Prélèvement 19.02.2021 15:44

Lixiviation					
Fraction >4mm (EN12457-2)	% Ms		52,8	0,1	Selon norme lixiviation
Lixiviation (EN 12457-2)		0	•		NF EN 12457-2
Masse brute Mh pour lixiviation	*) g	•	100	1	Selon norme lixiviation
Volume de lixiviant L ajouté pour l'extraction	*) ml		900	1	Selon norme lixiviation
Prétraitement des échantillon	S				
Masse échantillon total inférieure à 2 kg	kg	0	0,63	0	
Prétraitement de l'échantillon		•			Conforme à NEN-EN 16179
Broyeur à mâchoires		0			méthode interne

Calcul des Fractions solubles

Antimoine cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Arsenic cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Baryum cumulé (var. L/S)	mg/kg Ms	0,15	0,1	Selon norme lixiviation
Cadmium cumulé (var. L/S)	mg/kg Ms	0 - 0,001	0,001	Selon norme lixiviation
Chlorures cumulé (var. L/S)	mg/kg Ms	38	1	Selon norme lixiviation
Chrome cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02	Selon norme lixiviation
COT cumulé (var. L/S)	mg/kg Ms	14	10	Selon norme lixiviation
Cuivre cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02	Selon norme lixiviation
Fluorures cumulé (var. L/S)	mg/kg Ms	10	1	Selon norme lixiviation
Fraction soluble cumulé (var. L/S) *)	mg/kg Ms	1000	1000	Selon norme lixiviation
Indice phénol cumulé (var. L/S)	mg/kg Ms	0 - 0,1	0,1	Selon norme lixiviation
Mercure cumulé (var. L/S)	mg/kg Ms	0 - 0,0003	0,0003	Selon norme lixiviation
Molybdène cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Nickel cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Plomb cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Sélénium cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Sulfates cumulé (var. L/S)	mg/kg Ms	93	50	Selon norme lixiviation

Analy	yses	Phy	sico-c	:hi	imi	ques
-------	------	-----	--------	-----	-----	------

Spécification des échantillons		GP5 (0-1m)	Limite	Incert.		
	Unité	Résultat	Quant.	Résultat %	Méthode	
Lixiviation						
Fraction >4mm (EN12457-2)	% Ms	52,8	0,1		Selon norme lixiviation	
Lixiviation (EN 12457-2)		•			NF EN 12457-2	
Masse brute Mh pour lixiviation	*) g	° 100	11		Selon norme lixiviation	
Volume de lixiviant L ajouté pour l'extraction	n *) ml	900	1		Selon norme lixiviation	
Prétraitement des échantillo	ns					
Masse échantillon total inférieure à 2 kg	kg	° 0,63	0			
Prétraitement de l'échantillon		0			Conforme à NEN-EN 1617	
Broyeur à mâchoires		0			méthode interne	
Matière sèche	%	° 89,2	0,01	+/- 1	NEN-EN15934; EN1288	
Calcul des Fractions soluble	es					
Antimoine cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation	
Arsenic cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation	
Baryum cumulé (var. L/S)	*) mg/kg Ms	0,15	0,1		Selon norme lixiviation	
Cadmium cumulé (var. L/S)	*) mg/kg Ms	0 - 0,001	0,001		Selon norme lixiviation	
Chlorures cumulé (var. L/S)	*) mg/kg Ms	38	1		Selon norme lixiviation	
Chrome cumulé (var. L/S)	*) mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation	
COT cumulé (var. L/S)	*) mg/kg Ms	14	10		Selon norme lixiviation	
Cuivre cumulé (var. L/S)	*) mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation	
Fluorures cumulé (var. L/S)	*) mg/kg Ms	10	1		Selon norme lixiviation	
Fraction soluble cumulé (var. L/S)	*) mg/kg Ms	1000	1000		Selon norme lixiviation	
Indice phénol cumulé (var. L/S)	*) mg/kg Ms	0 - 0,1	0,1		Selon norme lixiviation	
Mercure cumulé (var. L/S)	*) mg/kg Ms	0 - 0,0003	0,0003		Selon norme lixiviation	
Molybdène cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation	
Nickel cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation	
Plomb cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation	
Sélénium cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation	
Sulfates cumulé (var. L/S)	*) mg/kg Ms	93	50		Selon norme lixiviation	
Zinc cumulé (var. L/S)	*) mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation	
Analyses Physico-chimique	S					
pH-H2O		° 8,8	0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)	
COT Carbone Organique Total	mg/kg Ms	<1000	1000		conforme ISO 10694 (2008	

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361958

Spécification des échantillons **BGP5 (0-1m)**

Specification des echantilloris	BGF3 (- ,			
	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Minéralisation à l'eau régale	0				NF-EN 16174; NF EN 1365 (déchets)
Métaux	,			<u> </u>	
Arsenic (As)	mg/kg Ms	3,7	1	+/- 15	Conforme à EN-ISO 11885,
		•		.,	16174 Conforme à EN-ISO 11885,
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		16174
Chrome (Cr)	mg/kg Ms	27	0,2	+/- 12	Conforme à EN-ISO 11885, 16174
Cuivre (Cu)	mg/kg Ms	15	0,2	+/- 20	Conforme à EN-ISO 11885, 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et E
Nickel (Ni)	mg/kg Ms	19	0,5	+/- 11	16174 Conforme à EN-ISO 11885,
Plomb (Pb)	mg/kg Ms	9,3	0,5	+/- 11	16174 Conforme à EN-ISO 11885,
					16174
Zinc (Zn)	mg/kg Ms	29	1	+/- 22	Conforme à EN-ISO 11885, 16174
Hydrocarbures Aromatiques	s Polycycliques (I	SO)			
Naphtalène	mg/kg Ms	<0,050	0,05		éguivalent à NF EN 161
Acénaphtylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 161
Acénaphtène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 161
Fluorène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 161
Phénanthrène	mg/kg Ms	0,059	0,05	+/- 20	équivalent à NF EN 161
Anthracène	mg/kg Ms	<0,050	0,05	17 20	équivalent à NF EN 161
Fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 161
Pyrène Pyrène	mg/kg Ms	0,066	0,05	+/- 19	équivalent à NF EN 161
Benzo(a)anthracène	mg/kg Ms	<0,050	0,05	T/- 19	équivalent à NF EN 161
Chrysène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 161
Benzo(b)fluoranthène			0,05		équivalent à NF EN 161
	mg/kg Ms	<0,050			-
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 161
Benzo(a)pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 161
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 161
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 161
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 161
HAP (6 Borneff) - somme	mg/kg Ms	n.d.			équivalent à NF EN 161
Somme HAP (VROM)	mg/kg Ms	0,0590 ^{x)}			équivalent à NF EN 161
HAP (EPA) - somme	mg/kg Ms	0,125 ×)			équivalent à NF EN 161
Composés aromatiques					
Benzène .	mg/kg Ms	<0,050	0,05		Conforme à ISO 2215
Toluène	mg/kg Ms	<0,050	0,05		Conforme à ISO 2215
Ethylbenzène	mg/kg Ms	<0,050	0,05		Conforme à ISO 2215
m,p-Xylène	mg/kg Ms	<0,10	0,1		Conforme à ISO 2215
o-Xylène	mg/kg Ms	<0,050	0,05		Conforme à ISO 2215
Somme Xylènes	mg/kg Ms	n.d.	0,00		Conforme à ISO 2215
BTEX total	*) mg/kg Ms	n.d.			Conforme à ISO 2215
Hydrocarbures totaux (ISO)	ggc	11.0.			00111011110 0 100 22 10
Hydrocarbures totaux C10-C40	mg/kg Ms	26,1	20	+/- 21	ISO 16703
Fraction C10-C12	*) mg/kg Ms	<4,0	4	T/- Z I	ISO 16703
	*) mg/kg Ms		4		ISO 16703
Fraction C12-C16	*) mg/kg Ms	<4,0		1/ 24	
Fraction C16-C20		2,9	2	+/- 21	ISO 16703
Fraction C20-C24	*) mg/kg Ms *) mg/kg Ms	3,9 5,2	2	+/- 21 +/- 21	ISO 16703 ISO 16703

RvA L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361958

Spécification des échantillons **BGP5 (0-1m)**

* 		Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
symbole " *)	Fraction C28-C32	*) mg/kg Ms	4,1	2		ISO 16703
ð	Fraction C32-C36	*) mg/kg Ms	3,9	2	+/- 21	ISO 16703
šyn	Fraction C36-C40	*) mg/kg Ms	2,5	2	+/- 21	ISO 16703
	Polychlorobiphényles					
pa	Somme 6 PCB	mg/kg Ms	0,028 x)			NEN-EN 16167
es	Somme 7 PCB (Ballschmiter)	mg/kg Ms	0,029 x)			NEN-EN 16167
tifié	PCB (28)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
Jen	PCB (52)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
i E	PCB (101)	mg/kg Ms	0,003	0,001	+/- 34	NEN-EN 16167
SOL	PCB (118)	mg/kg Ms	0,001	0,001	+/- 19	NEN-EN 16167
es	PCB (138)	mg/kg Ms	0,008	0,001	+/- 30	NEN-EN 16167
dité	PCB (153)	mg/kg Ms	0,009	0,001	+/- 22	NEN-EN 16167
créc	PCB (180)	mg/kg Ms	0,008	0,001	+/- 12	NEN-EN 16167
Seules les activités non accréditées sont identifiées par le	Analyses sur éluat après lixiv	iation				
рõ	L/S cumulé	ml/g	10,0	0,1		Selon norme lixiviation
és	Conductivité électrique	μS/cm	140	5	+/- 10	Selon norme lixiviation
Ξ	рН		8,4	0	+/- 5	Selon norme lixiviation
act	Température	°C	19,6	0		Selon norme lixiviation
les	Analyses Physico-chimiques	sur éluat				
les	Résidu à sec	mg/l	100	100	+/- 22	Equivalent à NF EN ISO 15216
	Fluorures (F)	mg/l	1,0	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
17	Indice phénol	mg/l	<0,010	0,01		NEN-EN 16192
5	Chlorures (CI)	mg/l	3,8	0,1	+/- 10	Conforme à ISO 15923-1
325	Sulfates (SO4)	mg/l	9,3	5	+/- 10	Conforme à ISO 15923-1
17	COT	mg/l	1,4	11	+/- 10	conforme EN 16192
\mathbb{E}	Métaux sur éluat					
80/	Antimoine (Sb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Ш	Arsenic (As)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
elon	Baryum (Ba)	μg/l	15	10	+/- 10	Conforme à EN-ISO 17294-2 (2004)
es s	Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
édité	Chrome (Cr)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
accr	Cuivre (Cu)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
ont	Mercure (Hg)	μg/l	<0,03	0,03		NEN-EN 1483 (2007)
ent s	Molybdène (Mo)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Sume	Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
op ∈	Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
dans ce document sont accréditées selon EN ISO/IEC 17025:2017.	Sélénium (Se)	µg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
s da	Zinc (Zn)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. Le calcul de l'incertitude de mesure combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l'expression de l'incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d'élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361958

Spécification des échantillons

BGP5 (0-1m)

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 22.02.2021 Fin des analyses: 26.02.2021

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

1. Hognenet

AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156 Chargée relation clientèle

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Your labs. Your service.

BURGEAP (LYON 69) Monsieur Clément BERRY 143 Avenue de Verdun 92130 ISSY-LES-MOULINEAUX **FRANCE**

> Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361959

1016265 BC21-981 / CSSPCE210146 - ITM n° Cde

N° échant. 361959 Solide / Eluat

Date de validation 19.02.2021 Prélèvement 19.02.2021 15:44

Prélèvement par: Client

Spécification des échantillons **BGP5 (2-3m)**

Unité Résultat Quant. Résultat % Méthode

Prétraitement des échantillons

Prétraitement de l'échantillon Conforme à NEN-EN 16179 0,01 ۰ +/- 1 NEN-EN15934; EN12880 Matière sèche % 93,4

Limite

Incert.

Prétraitement pour analyses des métaux

NF-EN 16174; NF EN 13657 Minéralisation à l'eau régale (déchets) Métaux

IVICIAUX	
Arsenic	(As)

sont identifiées par le symbole " *) ".

activités non accréditées

Senles

					10174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	41	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	14	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Nickel (Ni)	mg/kg Ms	26	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	8,0	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	28	1	+/- 22	Conforme à EN-ISO 11885, EN 16174

Arsenic (As)	mg/kg Ms	2,4	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	41	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	14	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Nickel (Ni)	mg/kg Ms	26	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	8,0	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	28	1	+/- 22	Conforme à EN-ISO 11885, EN 16174
Hydrocarbures Aromatique		SO)			
Naphtalène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Fluorène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Phénanthrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Benzo(a)anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Chrysène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
5 ())		<0,050	0,05		équivalent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	70,000	-,		
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181

RvA L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361959

Spécification des échantillons **BGP5 (2-3m)**

*.		Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
=	Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0.05		équivalent à NF EN 16181
symbole	HAP (6 Borneff) - somme	mg/kg Ms	n.d.	-,		équivalent à NF EN 16181
ýr	Somme HAP (VROM)	mg/kg Ms	n.d.			équivalent à NF EN 16181
<u>e</u>	HAP (EPA) - somme	mg/kg Ms	n.d.			équivalent à NF EN 16181
par	Composés aromatiques					
es	Benzène	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
sont identifiées	Toluène	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
den	Ethylbenzène	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
Ę	m,p-Xylène	mg/kg Ms	<0,10	0,1		Conforme à ISO 22155
sor	o-Xylène	mg/kg Ms	<0,050	0,05		Conforme à ISO 22155
es	Somme Xylènes	mg/kg Ms	n.d.			Conforme à ISO 22155
accréditées	Hydrocarbures totaux (ISO)					
cré	Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20		ISO 16703
	Fraction C10-C12	mg/kg Ms	<4,0	4		ISO 16703
nou	Fraction C12-C16	mg/kg Ms	<4,0	4		ISO 16703
	Fraction C16-C20	mg/kg Ms	<2,0	2		ISO 16703
activités	Fraction C20-C24	mg/kg Ms	<2,0	2		ISO 16703
	Fraction C24-C28	mg/kg Ms	<2,0	2		ISO 16703
les	Fraction C28-C32	mg/kg Ms	<2,0	2		ISO 16703
	Fraction C32-C36	mg/kg Ms	<2,0	2		ISO 16703
enles	Fraction C36-C40	mg/kg Ms	<2,0	2		ISO 16703
Ñ						

Limita

Incort

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. Le calcul de l'incertitude de mesure combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l'expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d'élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Début des analyses: 22.02.2021 Fin des analysés: 25.02.2021

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156 Chargée relation clientèle

· Magnenet

ISO/IEC 17025:2017.

Les activités rapportées dans ce document sont accréditées selon

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

BURGEAP (LYON 69) Monsieur Clément BERRY 143 Avenue de Verdun 92130 ISSY-LES-MOULINEAUX **FRANCE**

> Date 02.03.2021 N° Client 35004351

> > Conforme à EN-ISO 11885, EN

RAPPORT D'ANALYSES 1016265 - 361960

n° Cde 1016265 BC21-981 / CSSPCE210146 - ITM

mg/kg Ms

N° échant. 361960 Solide / Eluat

Date de validation 19.02.2021 Prélèvement 19.02.2021 15:44

Prélèvement par: Client

Spécification des échantillons **BGP5 (4-5m)**

Limite Incert. Unité Résultat Quant. Résultat % Méthode

Prétraitement des échantillons

Prétraitement de l'échantillon • Conforme à NEN-EN 16179 ۰ NEN-EN15934; EN12880 Matière sèche % 95.0 0,01 +/- 1

Prétraitement pour analyses des métaux

NF-EN 16174; NF EN 13657 Minéralisation à l'eau régale (déchets) Métaux

4,8

1

+/- 15

Arsenic (As)

identifiées par le symbole " *) ".

sont

activités non accréditées

Senles

ISO/IEC 17025:2017.

Ш

16174 Cadmium (Cd) mg/kg Ms <0,1 0,1 Conforme à EN-ISO 11885 EN 16174 Conforme à EN-ISO 11885, EN Chrome (Cr) mg/kg Ms 26 0,2 +/- 12 16174 +/- 20 Conforme à EN-ISO 11885, EN mg/kg Ms Cuivre (Cu) 17 0,2 16174 Mercure (Hg) mg/kg Ms <0,05 0,05 Conforme à ISO 16772 et EN 16174 Nickel (Ni) mg/kg Ms Conforme à EN-ISO 11885, EN 25 0,5 +/- 11 16174 Plomb (Pb) mg/kg Ms 7,0 0,5 +/- 11 Conforme à EN-ISO 11885, EN 16174 Zinc (Zn) +/- 22 Conforme à EN-ISO 11885, EN mg/kg Ms 21 1

Ę	Mickel (M)	ing/kg Wo	23	0,3	T/- 11	16174
selon	Plomb (Pb)	mg/kg Ms	7,0	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
ditées	Zinc (Zn)	mg/kg Ms	21	1	+/- 22	Conforme à EN-ISO 11885, EN 16174
ccréc	Hydrocarbures Aromatiques F	Polycycliques (I	SO)			
ā	Naphtalène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
sont	Acénaphtylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
	Acénaphtène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
ocument	Fluorène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
cn	Phénanthrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
ō	Anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
ce	Fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
dans	Pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
	Benzo(a)anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
ées	Chrysène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
rapporté	Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
abb	Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
	Benzo(a)pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
activités	Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
acti	Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Les						page 1 de 2

RvA L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361960

Spécification des échantillons BGP5 (4-5m)

·.		Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
=	Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
symbole	HAP (6 Borneff) - somme	mg/kg Ms	n.d.	•		équivalent à NF EN 16181
šym	Somme HAP (VROM)	mg/kg Ms	n.d.			équivalent à NF EN 16181
<u>e</u>	HAP (EPA) - somme	mg/kg Ms	n.d.			équivalent à NF EN 16181
par	Composés aromatiques					
es	Benzène	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
sont identifiées	Toluène	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
gen	Ethylbenzène	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
Ę	m,p-Xylène	mg/kg Ms	<0,10	0,1		Conforme à ISO 22155
sor	o-Xylène	mg/kg Ms	<0,050	0,05		Conforme à ISO 22155
es	Somme Xylènes	mg/kg Ms	n.d.			Conforme à ISO 22155
accréditées	Hydrocarbures totaux (ISO)					
čré	Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20		ISO 16703
	Fraction C10-C12	mg/kg Ms	<4,0	4		ISO 16703
nou	Fraction C12-C16	mg/kg Ms	<4,0	4		ISO 16703
	Fraction C16-C20	mg/kg Ms	<2,0	2		ISO 16703
activités	Fraction C20-C24	mg/kg Ms	<2,0	2		ISO 16703
act	Fraction C24-C28	mg/kg Ms	<2,0	2		ISO 16703
les	Fraction C28-C32	mg/kg Ms	<2,0	2		ISO 16703
es	Fraction C32-C36	mg/kg Ms	2,2	2	+/- 21	ISO 16703
	Fraction C36-C40	mg/kg Ms	<2,0	2		ISO 16703
Ø						

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé.

Le calcul de l' incertitude de mesure combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d' élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Début des analyses: 22.02.2021 Fin des analyses: 25.02.2021

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156 Chargée relation clientèle

· Magnenet

ISO/IEC 17025:2017.

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

BURGEAP (LYON 69) Monsieur Clément BERRY 143 Avenue de Verdun 92130 ISSY-LES-MOULINEAUX **FRANCE**

> Date 02.03.2021 N° Client 35004351

> > Méthode

RAPPORT D'ANALYSES 1016265 - 361961

Unité

sont identifiées par le symbole " *) ". 1016265 BC21-981 / CSSPCE210146 - ITM n° Cde

N° échant. 361961 Solide / Eluat

Date de validation 19.02.2021 Prélèvement 19.02.2021 15:44

Prélèvement par: Client

Spécification des échantillons **BGP6 (0-1m)**

	OTINO	rtocanat	Quart.	resounce 70	Motriodo
Lixiviation					
Fraction >4mm (EN12457-2)	% Ms	13,5	0,1		Selon norme lixiviation
Lixiviation (EN 12457-2)		•			NF EN 12457-2
iviasse brute iviii pour lixiviation	*) g	° 110	1		Selon norme lixiviation
Volume de lixiviant L ajouté pour l'extraction	^{*)} ml	900	1		Selon norme lixiviation
Prétraitement des échantillons	8				
Masse échantillon total inférieure à 2 kg	kg	° 0,61	0		
Prétraitement de l'échantillon		0			Conforme à NEN-EN 16179
Broyeur à mâchoires		0			méthode interne
Matière sèche	%	° 85,4	0,01	+/- 1	NEN-EN15934; EN12880
Calcul des Fractions solubles					
Antimoine cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Arsenic cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Baryum cumulé (var. L/S)	*) mg/kg Ms	0,13	0,1		Selon norme lixiviation
Cadmium cumulé (var. L/S)	*) mg/kg Ms	0 - 0,001	0,001		Selon norme lixiviation
Chlorures cumulé (var. L/S)	*) mg/kg Ms	58	1		Selon norme lixiviation
Chrome cumulé (var. L/S)	*) mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation
COT cumulé (var. L/S)	*) mg/kg Ms	25	10		Selon norme lixiviation
Cuivre cumulé (var. L/S)	*) mg/kg Ms	0,05	0,02		Selon norme lixiviation
	*) mg/kg Ms	19	1		Selon norme lixiviation
Fraction soluble cumulé (var. L/S)	*) mg/kg Ms	0 - 1000	1000		Selon norme lixiviation
Indice phénol cumulé (var. L/S)	*) mg/kg Ms	0 - 0,1	0,1		Selon norme lixiviation
Mercure cumulé (var. L/S)	*) mg/kg Ms	0 - 0,0003	0,0003		Selon norme lixiviation
Molybdène cumulé (var. L/S)	mg/kg Ms	0,05	0,05		Selon norme lixiviation
Nickel cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Plomb cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
, ,	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Sulfates cumulé (var. L/S)	mg/kg Ms	400	50		Selon norme lixiviation
Zinc cumulé (var. L/S)	mg/kg Ms	0,03	0,02		Selon norme lixiviation

9,6

<1000

0,1

1000

+/- 10

Résultat

Limite

Quant.

Incert.

Résultat %

COT Carbone Organique Total mg/kg Ms Prétraitement pour analyses des métaux

Analyses Physico-chimiques

es activités

rapportées dans ce document sont accréditées selon EN ISO/IEC 17025:2017. Seules les activités non accréditées

pH-H2O

page 1 de 4

Cf. NEN-ISO 10390 (sol

uniquement)

conforme ISO 10694 (2008)

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361961

Spécification des échantillons **BGP6 (0-1m)**

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Minéralisation à l'eau régale	0				NF-EN 16174; NF EN 13657 (déchets)
Métaux					(decineta)
Arsenic (As)	mg/kg Ms	7,7	1	+/- 15	Conforme à EN-ISO 11885, E
		· ·		1, 10	16174 Conforme à EN-ISO 11885, E
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		16174
Chrome (Cr)	mg/kg Ms	45	0,2	+/- 12	Conforme à EN-ISO 11885, E 16174
Cuivre (Cu)	mg/kg Ms	18	0,2	+/- 20	Conforme à EN-ISO 11885, E 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et E 16174
Nickel (Ni)	mg/kg Ms	31	0,5	+/- 11	Conforme à EN-ISO 11885, I
Plomb (Pb)	mg/kg Ms	13	0,5	+/- 11	16174 Conforme à EN-ISO 11885, I
Zinc (Zn)	mg/kg Ms	46	1	+/- 22	16174 Conforme à EN-ISO 11885, I
Hydrocarbures Aromatiques	Polyovoligues (I				16174
Naphtalène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Acénaphtylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Acénaphtène Fluorène	mg/kg Ms				équivalent à NF EN 1618
		<0,050	0,05		
Phénanthrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Benzo(a)anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Chrysène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Benzo(a)pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
HAP (6 Borneff) - somme	mg/kg Ms	n.d.			équivalent à NF EN 1618
Somme HAP (VROM)	mg/kg Ms	n.d.			équivalent à NF EN 1618
HAP (EPA) - somme	mg/kg Ms	n.d.			équivalent à NF EN 1618
Composés aromatiques					
Benzène	mg/kg Ms	<0,050	0,05		Conforme à ISO 2215
Toluène	mg/kg Ms	<0,050	0,05		Conforme à ISO 2215
<i>Ethylbenzène</i>	mg/kg Ms	<0,050	0,05		Conforme à ISO 2215
m,p-Xylène	mg/kg Ms	<0,10	0,1		Conforme à ISO 2215
o-Xylène	mg/kg Ms	<0,050	0,05		Conforme à ISO 2215
Somme Xylènes	mg/kg Ms	n.d.	0,00		Conforme à ISO 2215
BTEX total	*) mg/kg Ms	n.d.			Conforme à ISO 2215
Hydrocarbures totaux (ISO)					
Hydrocarbures totaux C10-C40	mg/kg Ms	180	20	+/- 21	ISO 16703
Fraction C10-C12	*) mg/kg Ms	17,9	4	+/- 21	ISO 16703
Fraction C12-C16	*) mg/kg Ms	76,9	4	+/- 21	ISO 16703
Fraction C16-C20	*) mg/kg Ms	60,3	2	+/- 21	ISO 16703
Fraction C20-C24	*) mg/kg Ms	23,4	2	+/- 21	ISO 16703
Fraction C24-C28	*) mg/kg Ms	<2,0	2	T/- Z I	ISO 16703
ΓΙα∪ΙΙUΠ UZ4-UZ0	TITIG/NG IVIS	<2,0			130 10/03

RvA L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361961

Spécification des échantillons **BGP6 (0-1m)**

*.		Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
symbole " *)		mg/kg Ms	<2,0	2		ISO 16703
g	Fraction C32-C36	mg/kg Ms	<2,0	2		ISO 16703
syn	Fraction C36-C40	mg/kg Ms	<2,0	2		ISO 16703
<u>e</u>	Polychlorobiphényles					
par	Somme 6 PCB	mg/kg Ms	n.d.			NEN-EN 16167
es	Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.			NEN-EN 16167
tifié	PCB (28)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
eu	PCB (52)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
it ic	PCB (101)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
Sor	PCB (118)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
es	PCB (138)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
dité	PCB (153)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
řě	PCB (180)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
activités non accréditées sont identifiées par le	Analyses sur éluat après lixivi	ation				
lon	L/S cumulé	ml/g	10.0	0,1		Selon norme lixiviation
S	Conductivité électrique	µS/cm	190	5	+/- 10	Selon norme lixiviation
Vİ.	pH		9,0	0	+/- 5	Selon norme lixiviation
acti	Température	°C	20,4	0		Selon norme lixiviation
es	Analyses Physico-chimiques s	sur éluat				
es	Résidu à sec	mg/l	<100	100		Equivalent à NF EN ISO 15216
Seules les	Fluorures (F)	mg/l	1,9	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
17.	Indice phénol	mg/l	<0,010	0,01		NEN-EN 16192
:20	Chlorures (CI)	mg/l	5,8	0,1	+/- 10	Conforme à ISO 15923-1
25	Sulfates (SO4)	mg/l	40	5	+/- 10	Conforme à ISO 15923-1
17025:2017.	COT	mg/l	2,5	1	+/- 10	conforme EN 16192
EC	Métaux sur éluat					
/OS	Antimoine (Sb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Ш	Arsenic (As)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
selon	Baryum (Ba)	μg/l	13	10	+/- 10	Conforme à EN-ISO 17294-2 (2004)
ées s	Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
rédite	Chrome (Cr)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
accı	Cuivre (Cu)	μg/l	4,9	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)
out	Mercure (Hg)	μg/l	<0,03	0,03		NEN-EN 1483 (2007)
ent s	Molybdène (Mo)	μg/l	5,1	5	+/- 10	Conforme à EN-ISO 17294-2 (2004)
cnm	Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
ē do	Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
s dans ce document sont accréditées selon EN ISO/IEC	Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
ss de	Zinc (Zn)	μg/l	2,6	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. Le calcul de l' incertitude de mesure combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d'élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

es activités

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361961

Spécification des échantillons BGP6 (0-1m)

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 22.02.2021 Fin des analyses: 26.02.2021

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

M. Magnenet

AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156 Chargée relation clientèle

sont identifiées par le symbole " *) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Your labs. Your service.

BURGEAP (LYON 69) Monsieur Clément BERRY 143 Avenue de Verdun 92130 ISSY-LES-MOULINEAUX **FRANCE**

> Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361962

1016265 BC21-981 / CSSPCE210146 - ITM n° Cde

N° échant. 361962 Solide / Eluat

Date de validation 19.02.2021 Prélèvement 19.02.2021 15:44

Prétraitement de l'échantillon		٥			Conforme à NEN-EN 16179
Matière sèche	%	° 89	,4 0,01	+/- 1	NEN-EN15934; EN12880

2	Mineralisation a l'eau regale			(déchets)
)	Métaux			

	Arsenic (As)	mg/kg Ms	3,6	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
	Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, EN 16174
	Chrome (Cr)	mg/kg Ms	29	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
	Cuivre (Cu)	mg/kg Ms	14	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
	Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
i	Nickel (Ni)	mg/kg Ms	20	0,5	+/- 11	Conforme à EN-ISO 11885, EN

Prélèvement par:	Clic					
Spécification des échantillons	Unité	iP6 (1-2m)	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Prétraitement des échantillon Prétraitement de l'échantillon	IS	0				Conforme à NEN-EN 1617
Matière sèche	%	0	89,4	0,01	+/- 1	NEN-EN15934; EN128
	1		03,4	0,01	7/- 1	INCIN-LINIUSSA, LINIZO
Prétraitement pour analyses	ues metaux	0				NF-EN 16174; NF EN 13657
Minéralisation à l'eau régale						(déchets)
Métaux						
Arsenic (As)	mg/kg Ms		3,6	1	+/- 15	Conforme à EN-ISO 11885, E 16174
Cadmium (Cd)	mg/kg Ms		<0,1	0,1		Conforme à EN-ISO 11885, E 16174
Chrome (Cr)	mg/kg Ms		29	0,2	+/- 12	Conforme à EN-ISO 11885, E 16174
Cuivre (Cu)	mg/kg Ms		14	0,2	+/- 20	Conforme à EN-ISO 11885, E 16174
Mercure (Hg)	mg/kg Ms		<0,05	0,05		Conforme à ISO 16772 et E 16174
Nickel (Ni)	mg/kg Ms		20	0,5	+/- 11	Conforme à EN-ISO 11885, E 16174
Plomb (Pb)	mg/kg Ms		9,9	0,5	+/- 11	Conforme à EN-ISO 11885, E 16174
Zinc (Zn)	mg/kg Ms		30	1	+/- 22	Conforme à EN-ISO 11885, E 16174
Hydrocarbures Aromatiques	Polycyclique	es (ISO)				'
Naphtalène	mg/kg Ms		<0,050	0,05		équivalent à NF EN 1618
Acénaphtylène	mg/kg Ms		<0,050	0,05		équivalent à NF EN 1618
Acénaphtène	mg/kg Ms		<0,050	0,05		équivalent à NF EN 1618
Fluorène	mg/kg Ms		<0,050	0,05		équivalent à NF EN 1618
Phénanthrène	mg/kg Ms		<0,050	0,05		équivalent à NF EN 1618
Anthracène	mg/kg Ms		<0,050	0,05		équivalent à NF EN 1618
Fluoranthène	mg/kg Ms		<0,050	0,05		équivalent à NF EN 1618
Pyrène	mg/kg Ms		<0,050	0,05		équivalent à NF EN 1618
Benzo(a)anthracène	mg/kg Ms		<0,050	0,05		équivalent à NF EN 1618
Chrysène	mg/kg Ms		<0,050	0,05		équivalent à NF EN 1618
Benzo(b)fluoranthène	mg/kg Ms		<0,050	0,05		équivalent à NF EN 1618
Benzo(k)fluoranthène	mg/kg Ms		<0,050	0,05		équivalent à NF EN 1618
Benzo(a)pyrène	mg/kg Ms		<0,050	0,05		équivalent à NF EN 1618
Dibenzo(a,h)anthracène	mg/kg Ms		<0,050	0,05		équivalent à NF EN 1618
Benzo(g,h,i)pérylène	mg/kg Ms		0,083	0,05	+/- 14	équivalent à NF EN 1618

page 1 de 2

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361962

BGP6 (1-2m) Spécification des échantillons

Ē.		Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
*	Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05	1 toodilat /o	équivalent à NF EN 16181
symbole	HAP (6 Borneff) - somme	mg/kg Ms	0,0830 ×)	0,03		éguivalent à NF EN 16181
y	Somme HAP (VROM)	mg/kg Ms	0,0830 ^{x)}			équivalent à NF EN 16181
	HAP (EPA) - somme	mg/kg Ms	0,0830 x)			équivalent à NF EN 16181
par	Composés aromatiques					
es	Benzène	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
sont identifiées	Toluène	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
den	Ethylbenzène	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
Ξ	m,p-Xylène	mg/kg Ms	<0,10	0,1		Conforme à ISO 22155
sor	o-Xylène	mg/kg Ms	<0,050	0,05		Conforme à ISO 22155
es	Somme Xylènes	mg/kg Ms	n.d.			Conforme à ISO 22155
accréditées	Hydrocarbures totaux (ISO)					
cré	Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20		ISO 16703
	Fraction C10-C12	mg/kg Ms	<4,0	4		ISO 16703
nou	Fraction C12-C16	mg/kg Ms	<4,0	4		ISO 16703
	Fraction C16-C20	mg/kg Ms	3,1	2	+/- 21	ISO 16703
activités	Fraction C20-C24	mg/kg Ms	<2,0	2		ISO 16703
act	Fraction C24-C28	mg/kg Ms	<2,0	2		ISO 16703
les	Fraction C28-C32	mg/kg Ms	<2,0	2		ISO 16703
es	Fraction C32-C36	mg/kg Ms	<2,0	2		ISO 16703
Seules	Fraction C36-C40	mg/kg Ms	<2,0	2		ISO 16703

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. Le calcul de l' incertitude de mesure combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d'élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Début des analyses: 22.02.2021 Fin des analyses: 26.02.2021

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156 Chargée relation clientèle

Dognenet

Kamer van Koophandel Nr. 08110898 VAT/BTW-ID-Nr.: NL 811132559 B01 Directeur ppa. Marc van Gelder Dr. Paul Wimmer

ISO/IEC 17025:2017.

sont identifiées par le symbole " *) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Your labs. Your service.

BURGEAP (LYON 69) Monsieur Clément BERRY 143 Avenue de Verdun 92130 ISSY-LES-MOULINEAUX **FRANCE**

> Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361963

n° Cde 1016265 BC21-981 / CSSPCE210146 - ITM

N° échant. 361963 Solide / Eluat

Date de validation 19.02.2021 Prélèvement 19.02.2021 15:44

	Unité	Résultat	Quant.	Résultat %	Méthode

Prétraitement des échantillons

Prétraitement de l'échantillon		0				Conforme à NEN-EN 16179
Matière sèche	%	0	93,3	0,01	+/- 1	NEN-EN15934; EN12880

Minéralisation à l'eau régale		0			NF-EN 16174; NF EN 13657 (déchets)
Métaux					
Arsenic (As)	mg/kg Ms	2,7	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	22	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	11	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Nickel (Ni)	mg/kg Ms	18	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	8,1	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	23	1	+/- 22	Conforme à EN-ISO 11885, EN

Prélèvement par:	Cli					
Spécification des échantillons	BG Unité	P6 (4-5m)	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Prétraitement des échantillon						
Prétraitement de l'échantillon	1 5	0				Conforme à NEN-EN 161
Matière sèche	%	•	93,3	0,01	+/- 1	NEN-EN15934; EN128
			30,0	0,01	., .	11211 21110001, 211120
Prétraitement pour analyses	ues metaux	•				NF-EN 16174; NF EN 13657
Minéralisation à l'eau régale						(déchets)
Métaux						
Arsenic (As)	mg/kg Ms		2,7	1	+/- 15	Conforme à EN-ISO 11885, E 16174
Cadmium (Cd)	mg/kg Ms		<0,1	0,1		Conforme à EN-ISO 11885, I 16174
Chrome (Cr)	mg/kg Ms		22	0,2	+/- 12	Conforme à EN-ISO 11885, I 16174
Cuivre (Cu)	mg/kg Ms		11	0,2	+/- 20	Conforme à EN-ISO 11885, I 16174
Mercure (Hg)	mg/kg Ms		<0,05	0,05		Conforme à ISO 16772 et E 16174
Nickel (Ni)	mg/kg Ms		18	0,5	+/- 11	Conforme à EN-ISO 11885, I 16174
Plomb (Pb)	mg/kg Ms		8,1	0,5	+/- 11	Conforme à EN-ISO 11885, I 16174
Zinc (Zn)	mg/kg Ms		23	1	+/- 22	Conforme à EN-ISO 11885, I 16174
Hydrocarbures Aromatiques	Polycycliau	es (ISO)				
Naphtalène	mg/kg Ms	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<0,050	0,05		équivalent à NF EN 1618
Acénaphtylène	mg/kg Ms		<0,050	0,05		équivalent à NF EN 1618
Acénaphtène	mg/kg Ms		<0,050	0,05		équivalent à NF EN 1618
Fluorène	mg/kg Ms		<0,050	0,05		équivalent à NF EN 1618
Phénanthrène	mg/kg Ms		<0,050	0,05		équivalent à NF EN 1618
Anthracène	mg/kg Ms		<0,050	0,05		équivalent à NF EN 1618
Fluoranthène	mg/kg Ms		<0,050	0,05		équivalent à NF EN 1618
Pyrène	mg/kg Ms		<0,050	0,05		équivalent à NF EN 1618
Benzo(a)anthracène	mg/kg Ms		<0,050	0,05		équivalent à NF EN 1618
Chrysène	mg/kg Ms		<0,050	0,05		équivalent à NF EN 1618
Benzo(b)fluoranthène	mg/kg Ms		<0,050	0,05		équivalent à NF EN 1618
Benzo(k)fluoranthène	mg/kg Ms		<0,050	0,05		équivalent à NF EN 1618
Benzo(a)pyrène	mg/kg Ms		<0,050	0,05		équivalent à NF EN 1618
Dibenzo(a,h)anthracène	mg/kg Ms		<0,050	0,05		équivalent à NF EN 1618
Benzo(g,h,i)pérylène	mg/kg Ms		0,063	0,05	+/- 14	équivalent à NF EN 1618

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361963

BGP6 (4-5m) Spécification des échantillons

Ē.		Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
* = 0	Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
symbole	HAP (6 Borneff) - somme	mg/kg Ms	0,0630 x)	-,		équivalent à NF EN 16181
šyn	Somme HAP (VROM)	mg/kg Ms	0,0630 x)			équivalent à NF EN 16181
<u>e</u>	HAP (EPA) - somme	mg/kg Ms	0,0630 x)			équivalent à NF EN 16181
par	Composés aromatiques					
es	Benzène	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
sont identifiées	Toluène	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
Jen	Ethylbenzène	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
ij	m,p-Xylène	mg/kg Ms	<0,10	0,1		Conforme à ISO 22155
sor	o-Xylène	mg/kg Ms	<0,050	0,05		Conforme à ISO 22155
es	Somme Xylènes	mg/kg Ms	n.d.			Conforme à ISO 22155
accréditées	Hydrocarbures totaux (ISO)					
cré	Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20		ISO 16703
	Fraction C10-C12	mg/kg Ms	<4,0	4		ISO 16703
non	Fraction C12-C16	mg/kg Ms	<4,0	4		ISO 16703
	Fraction C16-C20	mg/kg Ms	<2,0	2		ISO 16703
activités	Fraction C20-C24	mg/kg Ms	<2,0	2		ISO 16703
act	Fraction C24-C28	mg/kg Ms	<2,0	2		ISO 16703
les	Fraction C28-C32	mg/kg Ms	<2,0	2		ISO 16703
es	Fraction C32-C36	mg/kg Ms	<2,0	2		ISO 16703
enles	Fraction C36-C40	mg/kg Ms	<2,0	2		ISO 16703
ű						

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. Le calcul de l' incertitude de mesure combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d'élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Début des analyses: 22.02.2021 Fin des analyses: 25.02.2021

ISO/IEC 17025:2017,

Les activités rapportées dans ce document sont accréditées selon EN

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156

Dognenut

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Your labs. Your service.

BURGEAP (LYON 69) Monsieur Clément BERRY 143 Avenue de Verdun 92130 ISSY-LES-MOULINEAUX **FRANCE**

> Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361964

sont identifiées par le symbole " *) ". 1016265 BC21-981 / CSSPCE210146 - ITM n° Cde

N° échant. 361964 Solide / Eluat

Date de validation 19.02.2021 Prélèvement 19.02.2021 15:44

	Unité	Résultat	Quant.	Résultat %	Méthode
Lixiviation					
Fraction >4mm (EN12457-2)	% Ms	22,3	0,1		Selon norme lixiviation
Lixiviation (EN 12457-2)		0			NF EN 12457-2
Masse brute Mh pour lixiviation *)	g	° 100	1		Selon norme lixiviation
Volume de lixiviant L ajouté pour l'extraction *)	ml	900	1		Selon norme lixiviation
Prétraitement des échantillons					
Masse échantillon total inférieure à 2 kg	kg	° 0,68	0		
Prétraitement de l'échantillon		0			Conforme à NEN-EN 16179
Broyeur à mâchoires		0			méthode interne
Matière sèche	%	° 90,7	0,01	+/- 1	NEN-EN15934; EN12880
Calcul des Fractions solubles					
Antimoine cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Arsenic cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Baryum cumulé (var. L/S)	mg/kg Ms	0 - 0,1	0,1		Selon norme lixiviation
Cadmium cumulé (var. L/S)	mg/kg Ms	0 - 0,001	0,001		Selon norme lixiviation
Chlorures cumulé (var. L/S)	mg/kg Ms	25	1		Selon norme lixiviation
Chrome cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation
COT cumulé (var. L/S)	mg/kg Ms	0 - 10	10		Selon norme lixiviation

5	Chlorures cumulé (var. L/S)	mg/kg Ms	25	1	Selon norme lixiviation
מ	Chrome cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02	Selon norme lixiviation
D D	COT cumulé (var. L/S)	mg/kg Ms	0 - 10	10	Selon norme lixiviation
5	Cuivre cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02	Selon norme lixiviation
ָבָ כְּ	Fluorures cumulé (var. L/S) *)	mg/kg Ms	9,0	1	Selon norme lixiviation
ק	Fraction soluble cumulé (var. L/S) *)	mg/kg Ms	0 - 1000	1000	Selon norme lixiviation
5	Indice phénol cumulé (var. L/S) *)	mg/kg Ms	0 - 0,1	0,1	Selon norme lixiviation
n =	Mercure cumulé (var. L/S)	mg/kg Ms	0 - 0,0003	0,0003	Selon norme lixiviation
D	Molybdène cumulé (var. L/S) *)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
5	Nickel cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
3	Plomb cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
3	Sélénium cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
2	Sulfates cumulé (var. L/S)	mg/kg Ms	0 - 50	50	Selon norme lixiviation
Š	Zinc cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02	Selon norme lixiviation

Analyses	Physico-c	himiauae
Anaivses	Physico-c	:nimidiles

Prélèvement par: Spécification des échantillons		ient GP7 (0-1m)			
Lixiviation	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Fraction >4mm (EN12457-2)	% Ms	22,3	0,1		Selon norme lixiviation
Lixiviation (EN 12457-2)	70 1013	0	0,1		NF EN 12457-2
Masse brute Mh pour lixiviation	*) a	° 100	1		Selon norme lixiviation
Volume de lixiviant L ajouté pour l'extractio		900	1		Selon norme lixiviation
Prétraitement des échantille			•		
Masse échantillon total inférieure à 2 kg		0.60			
Prétraitement de l'échantillon	kg	0,68	0		Conforme à NEN-EN 1617
Broyeur à mâchoires		0			méthode interne
Matière sèche	%	° 90,7	0,01	+/- 1	NEN-EN15934; EN128
		90,1	0,01	+/- 1	NEIN-EIN 13934, EIN 1200
Calcul des Fractions soluble		1			
Antimoine cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Arsenic cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Baryum cumulé (var. L/S)	*) mg/kg Ms	0 - 0,1	0,1		Selon norme lixiviation
Cadmium cumulé (var. L/S)	*) mg/kg Ms	0 - 0,001	0,001		Selon norme lixiviation
Chlorures cumulé (var. L/S)	*) mg/kg Ms	25	11		Selon norme lixiviation
Chrome cumulé (var. L/S)	*) mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation
COT cumulé (var. L/S)	*) mg/kg Ms	0 - 10	10		Selon norme lixiviation
Cuivre cumulé (var. L/S)	*) mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation
Fluorures cumulé (var. L/S)	*) mg/kg Ms	9,0	1		Selon norme lixiviation
Fraction soluble cumulé (var. L/S)	*) mg/kg Ms	0 - 1000	1000		Selon norme lixiviation
Indice phénol cumulé (var. L/S)	*) mg/kg Ms	0 - 0,1	0,1		Selon norme lixiviation
Mercure cumulé (var. L/S)	*) mg/kg Ms	0 - 0,0003	0,0003		Selon norme lixiviation
Molybdène cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Nickel cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Plomb cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Sélénium cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Sulfates cumulé (var. L/S)	*) mg/kg Ms	0 - 50	50		Selon norme lixiviation
Zinc cumulé (var. L/S)	*) mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation
Analyses Physico-chimique	·s				
pH-H2O		° 8,0	0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)
COT Carbone Organique Total	mg/kg Ms	<1000	1000		conforme ISO 10694 (200

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361964

Spécification des échantillons **BGP7 (0-1m)**

* =.		Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
ole "	Minéralisation à l'eau régale		۰			NF-EN 16174; NF EN 13657 (déchets)
/mb	Métaux	'	1		1	(assisso)
Seules les activités non accréditées sont identifiées par le symbole " *)	Arsenic (As)	mg/kg Ms	3,7	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
s pai	Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, EN 16174
tifiée	Chrome (Cr)	mg/kg Ms	34	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
iden	Cuivre (Cu)	mg/kg Ms	16	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
sont	Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
tées	Nickel (Ni)	mg/kg Ms	26	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
rédi	Plomb (Pb)	mg/kg Ms	11	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
n acc	Zinc (Zn)	mg/kg Ms	34	1	+/- 22	Conforme à EN-ISO 11885, EN 16174
ou :	Hydrocarbures Aromatiques Po	olycycliqu	es (ISO)			
ités	Naphtalène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Ę	Acénaphtylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
ă	Acénaphtène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
<u>ĕ</u>	Fluorène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
les	Phénanthrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
, en	Anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
	Fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
170	Pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
5:2	Benzo(a)anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
02	Chrysène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
17	Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
В	Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
0		mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
<u>S</u>	Benzo(a)pyrène	mg/kg Ms				équivalent à NF EN 16181
H	Dibenzo(a,h)anthracène		<0,050	0,05		équivalent à NF EN 16181
o	Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05		·
selon EN ISO/IEC 17025:2017.	Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
es	HAP (6 Borneff) - somme	mg/kg Ms	n.d.			équivalent à NF EN 16181
lité	Somme HAP (VROM)	mg/kg Ms	n.d.			équivalent à NF EN 16181
ent sont accréditées	HAP (EPA) - somme	mg/kg Ms	n.d.			équivalent à NF EN 16181
ac	Composés aromatiques					
out	Benzène	mg/kg Ms	<0,050	0,05		Conforme à ISO 22155
it S	Toluène	mg/kg Ms	<0,050	0,05		Conforme à ISO 22155
	Ethylbenzène	mg/kg Ms	<0,050	0,05		Conforme à ISO 22155
docum	m,p-Xylène	mg/kg Ms	<0,10	0,1		Conforme à ISO 22155
ĕ	o-Xylène	mg/kg Ms	<0,050	0,05		Conforme à ISO 22155
Ge	Somme Xylènes	mg/kg Ms	n.d.			Conforme à ISO 22155
ns	BTEX total	mg/kg Ms	n.d.			Conforme à ISO 22155
qa	Hydrocarbures totaux (ISO)					
, es	Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20		ISO 16703
orte		mg/kg Ms	<4,0	4		ISO 16703
ď		mg/kg Ms	<4,0	4		ISO 16703
3 Ta		mg/kg Ms	2,6	2	+/- 21	ISO 16703
ités		mg/kg Ms	2,4	2	+/- 21	ISO 16703
activités rapportées dans ce		mg/kg Ms	<2,0	2	1, 21	ISO 16703
es ac		199 1110	\Z,U			130 10700

RvA L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361964

Spécification des échantillons **BGP7 (0-1m)**

*.		Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
symbole " *)		mg/kg Ms	2,4	2		ISO 16703
g	Fraction C32-C36	mg/kg Ms	2,9	2	+/- 21	ISO 16703
syn	Fraction C36-C40	mg/kg Ms	2,4	2	+/- 21	ISO 16703
<u>e</u>	Polychlorobiphényles					
par	Somme 6 PCB	mg/kg Ms	n.d.			NEN-EN 16167
es	Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.			NEN-EN 16167
tifié	PCB (28)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
eu	PCB (52)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
ij	PCB (101)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
sor	PCB (118)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
es	PCB (138)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
dité	PCB (153)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
cré	PCB (180)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
activités non accréditées sont identifiées par le	Analyses sur éluat après lixivia	ation				
Jon	L/S cumulé	ml/g	10,0	0,1		Selon norme lixiviation
és r	Conductivité électrique	μS/cm	100	5	+/- 10	Selon norme lixiviation
<u>i</u>	pH		8,4	0	+/- 5	Selon norme lixiviation
act	Température	°C	20,5	0		Selon norme lixiviation
les	Analyses Physico-chimiques s	ur éluat				
les	Résidu à sec	mg/l	<100	100		Equivalent à NF EN ISO 15216
Seules les	Fluorures (F)	mg/l	0,9	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
17.	Indice phénol	mg/l	<0,010	0,01		NEN-EN 16192
.50	Chlorures (CI)	mg/l	2,5	0,1	+/- 10	Conforme à ISO 15923-1
)25	Sulfates (SO4)	mg/l	<5,0	5		Conforme à ISO 15923-1
17025:2017.	СОТ	mg/l	<1,0	1		conforme EN 16192
EC	Métaux sur éluat					
s dans ce document sont accréditées selon EN ISO/IEC	Antimoine (Sb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Ш	Arsenic (As)	µg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
selon	Baryum (Ba)	µg/l	<10	10		Conforme à EN-ISO 17294-2 (2004)
ées s	Cadmium (Cd)	µg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
rédite	Chrome (Cr)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
accı	Cuivre (Cu)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
ont	Mercure (Hg)	μg/l	<0,03	0,03		NEN-EN 1483 (2007)
ent s	Molybdène (Mo)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
cnw	Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
è do	Plomb (Pb)	µg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
ากร c	Sélénium (Se)	µg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
ss de	Zinc (Zn)	µg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. Le calcul de l' incertitude de mesure combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d'élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

es activités

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361964

Spécification des échantillons BGP7 (0-1m)

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 22.02.2021 Fin des analyses: 26.02.2021

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156 Chargée relation clientèle

Lognenet

sont identifiées par le symbole " *) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Your labs. Your service.

BURGEAP (LYON 69) Monsieur Clément BERRY 143 Avenue de Verdun 92130 ISSY-LES-MOULINEAUX **FRANCE**

> Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361965

1016265 BC21-981 / CSSPCE210146 - ITM n° Cde

N° échant. 361965 Solide / Eluat

Date de validation 19.02.2021 Prélèvement 19.02.2021 15:44

Selon norme lixiviation
NF EN 12457-2
Selon norme lixiviation
Selon norme lixiviation

Masse échantillon total inférieure à 2 kg	kg	0	0,67	0		
Prétraitement de l'échantillon		0				Conforme à NEN-EN 16179
Broyeur à mâchoires		0				méthode interne
Matière sèche	%	0	88,1	0,01	+/- 1	NEN-EN15934; EN12880

-	Prétraitement de l'échantillon					Conforme à NEN-EN 16179
į	Broyeur à mâchoires		0			méthode interne
3	Matière sèche	%	° 88,1	0,01	+/- 1	NEN-EN15934; EN12880
-	Calcul des Fractions solubles					
<u>,</u>	Antimoine cumulé (var. L/S) *)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Ò	Arsenic cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
,	- * * * * * * * * * * * * * * * * * * *					0.1

-	Baryum cumulé (var. L/S)	mg/kg Ms	0 - 0,1	0,1	Selon norme lixiviation
Ī	Cadmium cumulé (var. L/S)	mg/kg Ms	0 - 0,001	0,001	Selon norme lixiviation
5	Chlorures cumulé (var. L/S)	mg/kg Ms	22	1	Selon norme lixiviation
0	Chrome cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02	Selon norme lixiviation
ט ט	COT cumulé (var. L/S)	mg/kg Ms	14	10	Selon norme lixiviation
5	Cuivre cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02	Selon norme lixiviation
2	Fluorures cumulé (var. L/S) *)	mg/kg Ms	5,0	1	Selon norme lixiviation
<u> </u>	Fraction soluble cumulé (var. L/S) *)	mg/kg Ms	0 - 1000	1000	Selon norme lixiviation
5	Indice phénol cumulé (var. L/S)	mg/kg Ms	0 - 0,1	0,1	Selon norme lixiviation
=	Mercure cumulé (var. L/S)	mg/kg Ms	0 - 0,0003	0,0003	Selon norme lixiviation
ט	Molybdène cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
3	Nickel cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
3	Plomb cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
2	Sélénium cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
פ	Sulfates cumulé (var. L/S)	mg/kg Ms	0 - 50	50	Selon norme lixiviation
Š	Zinc cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02	Selon norme lixiviation

Analyses	Dhysiaa shimisusa
Anaivses	Physico-chimiques

Spécification des échantillons	ВС	SP8 (1-2m)	Limita	lacort	
	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Lixiviation					
Fraction >4mm (EN12457-2)	% Ms	20,6	0,1		Selon norme lixiviation
Lixiviation (EN 12457-2)		0			NF EN 12457-2
Masse brute Mh pour lixiviation	*) g	° 100	1		Selon norme lixiviation
Volume de lixiviant L ajouté pour l'extractio	n *) ml	900	1		Selon norme lixiviation
Prétraitement des échantille	ons				
Masse échantillon total inférieure à 2 kg	kg	° 0,67	0		
Prétraitement de l'échantillon		0			Conforme à NEN-EN 1617
Broyeur à mâchoires		0			méthode interne
Matière sèche	%	° 88,1	0,01	+/- 1	NEN-EN15934; EN1288
Calcul des Fractions soluble	25				
Antimoine cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Arsenic cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Baryum cumulé (var. L/S)	*) mg/kg Ms	0 - 0,1	0,1		Selon norme lixiviation
Cadmium cumulé (var. L/S)	*) mg/kg Ms	0 - 0,001	0,001		Selon norme lixiviation
Chlorures cumulé (var. L/S)	*) mg/kg Ms	22	1		Selon norme lixiviation
Chrome cumulé (var. L/S)	*) mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation
COT cumulé (var. L/S)	*) mg/kg Ms	14	10		Selon norme lixiviation
Cuivre cumulé (var. L/S)	*) mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation
Fluorures cumulé (var. L/S)	*) mg/kg Ms	5,0	1		Selon norme lixiviation
Fraction soluble cumulé (var. L/S)	*) mg/kg Ms	0 - 1000	1000		Selon norme lixiviation
Indice phénol cumulé (var. L/S)	*) mg/kg Ms	0 - 0,1	0,1		Selon norme lixiviation
Mercure cumulé (var. L/S)	*) mg/kg Ms	0 - 0,0003	0,0003		Selon norme lixiviation
Molybdène cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Nickel cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Plomb cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Sélénium cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Sulfates cumulé (var. L/S)	*) mg/kg Ms	0 - 50	50		Selon norme lixiviation
Zinc cumulé (var. L/S)	*) mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation
Analyses Physico-chimique	es	<u> </u>			
pH-H2O		° 8,0	0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)
COT Carbone Organique Total	mg/kg Ms	1200	1000	+/- 16	conforme ISO 10694 (2008

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361965

Spécification des échantillons **BGP8 (1-2m)**

	Opcomoditori des conditimoris	BOI 0 (1 21	•••,			
*.		Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Seules les activités non accréditées sont identifiées par le symbole " *)	Minéralisation à l'eau régale	۰				NF-EN 16174; NF EN 13657 (déchets)
ď	Métaux					
le sy	Arsenic (As)	mg/kg Ms	6,3	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
s par	Cadmium (Cd)	mg/kg Ms	0,1	0,1	+/- 21	Conforme à EN-ISO 11885, EN 16174
tifiée	Chrome (Cr)	mg/kg Ms	32	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
iden	Cuivre (Cu)	mg/kg Ms	19	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
sont	Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
tées	Nickel (Ni)	mg/kg Ms	33	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
crédi	Plomb (Pb)	mg/kg Ms	14	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
n acc	Zinc (Zn)	mg/kg Ms	31	1	+/- 22	Conforme à EN-ISO 11885, EN 16174
2	Hydrocarbures Aromatiques Po	olycycliques (ISO)				
tés	Naphtalène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Ĭ	Acénaphtylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
ä	Acénaphtène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
<u>8</u>	Fluorène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
les	Phénanthrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
šeu	Anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
	Fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
9	Pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
2.5	Benzo(a)anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
025						équivalent à NF EN 16181
17	Chrysène	mg/kg Ms	<0,050	0,05		·
Ω	Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181 équivalent à NF EN 16181
EN ISO/IEC 17025:2017.	Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05		
<u> </u>	Benzo(a)pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
H	Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
'n	Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
ge	Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
SS	HAP (6 Borneff) - somme	mg/kg Ms	n.d.			équivalent à NF EN 16181
itée	Somme HAP (VROM)	mg/kg Ms	n.d.			équivalent à NF EN 16181
sont accréditées selon	HAP (EPA) - somme	mg/kg Ms	n.d.			équivalent à NF EN 16181
20	Composés aromatiques					
± 8	Benzène	mg/kg Ms	<0,050	0,05		Conforme à ISO 22155
SO	Toluène	mg/kg Ms	<0,050	0,05		Conforme à ISO 22155
Ħ	Ethylbenzène	mg/kg Ms	<0,050	0,05		Conforme à ISO 22155
me	m,p-Xylène	mg/kg Ms	<0,10	0,1		Conforme à ISO 22155
SC	o-Xylène	mg/kg Ms	<0,050	0,05		Conforme à ISO 22155
ŏ	Somme Xylènes	mg/kg Ms	n.d.	0,03		Conforme à ISO 22155
8		mg/kg Ms	n.d.			Conforme à ISO 22155
dans ce docume		ing/ng wis	n.u.			Contonne a 130 22 133
လ္မ	Hydrocarbures totaux (ISO)					100 1000
tée	Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20		ISO 16703
por		mg/kg Ms	<4,0	4		ISO 16703
ap		mg/kg Ms	<4,0	4		ISO 16703
és I		mg/kg Ms	<2,0	2		ISO 16703
activités rapportées		mg/kg Ms	<2,0	2		ISO 16703
acti	Fraction C24-C28	mg/kg Ms	<2,0	2		ISO 16703
S	·	·				

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361965

Spécification des échantillons BGP8 (1-2m)

* = .		Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
symbole " *)	Fraction C28-C32	mg/kg Ms	<2,0	2		ISO 16703
Q		mg/kg Ms	<2,0	2		ISO 16703
χ		mg/kg Ms	<2,0	2		ISO 16703
<u>e</u>	Polychlorobiphényles		, ,		,	
par	Somme 6 PCB	mg/kg Ms	n.d.			NEN-EN 16167
es	Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.			NEN-EN 16167
tifié	PCB (28)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
ent	PCB (52)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
.e	PCB (101)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
Son	PCB (118)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
es	PCB (138)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
ité.	PCB (153)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
řéc	PCB (180)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
acc	Analyses sur éluat après lixivi	ation				
lon	L/S cumulé	ml/g	10,0	0,1		Selon norme lixiviation
S	Conductivité électrique	μS/cm	94,7	5	+/- 10	Selon norme lixiviation
vité	рН	J. C , c	8,0	0	+/- 5	Selon norme lixiviation
acti	Température	°C	20,3	0	1, 5	Selon norme lixiviation
es	Analyses Physico-chimiques s		,-,-		1	
es	Résidu à sec	mg/l	<100	100		Equivalent à NF EN ISO 15216
Seules les activités non accréditées sont identifiées par le	Fluorures (F)	mg/l	0,5	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
17.	Indice phénol	mg/l	<0,010	0,01		NEN-EN 16192
20	Chlorures (CI)	mg/l	2,2	0,1	+/- 10	Conforme à ISO 15923-1
25	Sulfates (SO4)	mg/l	<5,0	5		Conforme à ISO 15923-1
17025:2017.	СОТ	mg/l	1,4	1	+/- 10	conforme EN 16192
Ċ	Métaux sur éluat					
es dans ce document sont accréditées selon EN ISO/IEC	Antimoine (Sb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Ш И	Arsenic (As)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
elon	Baryum (Ba)	μg/l	<10	10		Conforme à EN-ISO 17294-2 (2004)
ées s	Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
rédite	Chrome (Cr)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
t acc	Cuivre (Cu)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
O	Mercure (Hg)	μg/l	<0,03	0,03		NEN-EN 1483 (2007)
ent s	Molybdène (Mo)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
cnme	Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
e do	Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
ans c	Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
es de	Zinc (Zn)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé.
Le calcul de l' incertitude de mesure combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d' élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

es activités

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361965

Spécification des échantillons

BGP8 (1-2m)

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 22.02.2021 Fin des analyses: 26.02.2021

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

Lognenet

AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156 Chargée relation clientèle

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

BURGEAP (LYON 69) Monsieur Clément BERRY 143 Avenue de Verdun 92130 ISSY-LES-MOULINEAUX

FRANCE

sont identifiées par le symbole " *) ".

les activités non accréditées

Senles

Date 02.03.2021 N° Client 35004351

Méthode

RAPPORT D'ANALYSES 1016265 - 361966

Unité

n° Cde 1016265 BC21-981 / CSSPCE210146 - ITM

N° échant. 361966 Solide / Eluat

Date de validation 19.02.2021

Prélèvement 19.02.2021 15:44

Prélèvement par: Client

Spécification des échantillons **BGP8 (3-4m)**

Prétraitement des échantillons						
Prétraitement de l'échantillon		•				Conforme à NEN-EN 16179
Broyeur à mâchoires		۰				méthode interne
Matière sèche	%	0	87,3	0,01	+/- 1	NEN-EN15934; EN12880

Résultat

Limite

Quant.

Incert.

Résultat %

2	Prétraitement pour analyses de	s metaux			
5	Minéralisation à l'eau régale		•		NF-EN 16174; NF EN 13657
ζ.					(déchets)

Métaux	(
Arsenic	(As)

		-,			16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	36	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	19	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Nickel (Ni)	mg/kg Ms	23	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	9,2	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	28	1	+/- 22	Conforme à EN-ISO 11885, EN 16174

					(deciriote)
Métaux					
Arsenic (As)	mg/kg Ms	3,2	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	36	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	19	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Nickel (Ni)	mg/kg Ms	23	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	9,2	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	28	1	+/- 22	Conforme à EN-ISO 11885, EN 16174
Hydrocarbures Aromatiqu	es Polycycliques (IS	SO)			
Naphtalène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Fluorène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Phénanthrène	mg/kg Ms	0,11	0,05	+/- 20	équivalent à NF EN 16181
Anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Fluoranthène	mg/kg Ms	0,19	0,05	+/- 17	équivalent à NF EN 16181
Pyrène	mg/kg Ms	0,16	0,05	+/- 19	équivalent à NF EN 16181
Benzo(a)anthracène	mg/kg Ms	0,069	0,05	+/- 14	équivalent à NF EN 16181
Chrysène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	0,060	0,05	+/- 12	équivalent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
	1 "	0.070	0.05	./ 4.4	équivalent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	0,076	0,05	+/- 14	cquivalent a TVI ETV TOTOT

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361966

Spécification des échantillons BGP8 (3-4m)

	Unité	Résultat	Quant.	inceπ. Résultat %	Méthode
Benzo(q,h,i)pérylène	mg/kg Ms	<0.050	0,05		équivalent à NF EN 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
HAP (6 Borneff) - somme	mg/kg Ms	0,326 x)			équivalent à NF EN 16181
Somme HAP (VROM)	mg/kg Ms	0,445 ^{x)}			équivalent à NF EN 16181
HAP (EPA) - somme	mg/kg Ms	0,665 ^{x)}			équivalent à NF EN 16181
Composés aromatiques					
Benzène	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
Toluène	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
Ethylbenzène	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	0,1		Conforme à ISO 22155
o-Xylène	mg/kg Ms	<0,050	0,05		Conforme à ISO 22155
Somme Xylènes	mg/kg Ms	n.d.			Conforme à ISO 22155
Hydrocarbures totaux (ISO)					
Hydrocarbures totaux C10-C40	mg/kg Ms	39,7	20	+/- 21	ISO 16703
Fraction C10-C12	mg/kg Ms	4,8	4	+/- 21	ISO 16703
Fraction C12-C16	mg/kg Ms	7,0	4	+/- 21	ISO 16703
Fraction C16-C20	mg/kg Ms	6,3	2	+/- 21	ISO 16703
Fraction C20-C24	mg/kg Ms	5,5	2	+/- 21	ISO 16703
Fraction C24-C28	mg/kg Ms	5,0	2	+/- 21	ISO 16703
Fraction C28-C32	mg/kg Ms	4,6	2		ISO 16703
		4,2		+/- 21	ISO 16703
Fraction C36-C40	mg/kg Ms	2,3	2	+/- 21	ISO 16703
	HAP (6 Borneff) - somme Somme HAP (VROM) HAP (EPA) - somme Composés aromatiques Benzène Toluène Ethylbenzène m,p-Xylène o-Xylène Somme Xylènes Hydrocarbures totaux (ISO) Hydrocarbures totaux C10-C40 Fraction C10-C12 Fraction C12-C16 Fraction C16-C20 Fraction C16-C20 Fraction C20-C24 Fraction C24-C28 Fraction C28-C32 Fraction C32-C36	Benzo(g,h,i)pérylène mg/kg Ms Indéno(1,2,3-cd)pyrène mg/kg Ms HAP (6 Borneff) - somme mg/kg Ms Somme HAP (VROM) mg/kg Ms HAP (EPA) - somme mg/kg Ms Composés aromatiques Benzène mg/kg Ms Toluène mg/kg Ms Ethylbenzène mg/kg Ms Ethylbenzène mg/kg Ms Ms Somme Xylène mg/kg Ms Somme Xylène mg/kg Ms Hydrocarbures totaux (ISO) Hydrocarbures totaux C10-C40 mg/kg Ms Fraction C10-C12 mg/kg Ms Fraction C10-C16 mg/kg Ms Fraction C16-C20 mg/kg Ms Fraction C20-C24 mg/kg Ms Fraction C20-C24 mg/kg Ms Fraction C24-C28 mg/kg Ms Fraction C28-C32 mg/kg Ms Fraction C32-C36 mg/kg Ms Fraction C32-C36	Benzo(g,h,i)pérylène mg/kg Ms <0,050 Indéno(1,2,3-cd)pyrène mg/kg Ms <0,050	Unité Résultat Quant.	Benzo(g,h,i)pérylène mg/kg Ms <0,050 0,05 Indéno(1,2,3-cd)pyrène mg/kg Ms <0,050 0,05 HAP (6 Borneff) - somme mg/kg Ms 0,326 ∞ Somme HAP (VROM) mg/kg Ms 0,445 ∞ HAP (EPA) - somme mg/kg Ms 0,665 ∞ Composés aromatiques Benzène mg/kg Ms <0,05 0,05 Toluène mg/kg Ms <0,05 0,05 Ethylbenzène mg/kg Ms <0,05 0,05 Ethylbenzène mg/kg Ms <0,05 0,05 m,p-Xylène mg/kg Ms <0,10 0,1 o-Xylène mg/kg Ms <0,050 0,05 Somme Xylènes mg/kg Ms <0,050 0,05 Hydrocarbures totaux (ISO) Hydrocarbures totaux C10-C40 mg/kg Ms 39,7 20 +/- 21 Fraction C10-C12 mg/kg Ms 7,0 4 +/- 21 Fraction C16-C20 mg/kg Ms 6,3 2 +/- 21 Fraction C20-C24 mg/kg Ms 5,5 2 +/- 21 Fraction C24-C28 mg/kg Ms 5,0 2 +/- 21 Fraction C28-C32 mg/kg Ms 4,6 2 Fraction C32-C36 mg/kg Ms 4,2 2 +/- 21 F

Limita

Incort

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé.

Le calcul de l' incertitude de mesure combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d' élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Début des analyses: 22.02.2021 Fin des analyses: 25.02.2021

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156 Chargée relation clientèle

page 2 de 2

IESTING
RVA L 005

ISO/IEC 17025:201

Z

Les activités rapportées dans ce document sont accréditées selon

· Hognenet

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

BURGEAP (LYON 69) Monsieur Clément BERRY 143 Avenue de Verdun 92130 ISSY-LES-MOULINEAUX **FRANCE**

> Date 02.03.2021 N° Client 35004351

> > Méthode

RAPPORT D'ANALYSES 1016265 - 361967

Unité

sont identifiées par le symbole " *) ". 1016265 BC21-981 / CSSPCE210146 - ITM n° Cde

N° échant. 361967 Solide / Eluat

Date de validation 19.02.2021 Prélèvement 19.02.2021 15:44

Prélèvement par: Client

Spécification des échantillons **BGP9 (1-2m)**

Lixiviation					
Fraction >4mm (EN12457-2)	% Ms		12,8	0,1	Selon norme lixiviation
Lixiviation (EN 12457-2)		0			NF EN 12457-2
Masse brute Mh pour lixiviation	*) g	•	100	1	Selon norme lixiviation
Volume de lixiviant L ajouté pour l'extraction	*) ml		900	1	Selon norme lixiviation
Prétraitement des échantillons					

Résultat

Limite

Quant.

Incert.

Résultat %

Seules les activités non accréditées

Masse échantillon total inférieure à 2 kg	kg	0	0,57	0		
Prétraitement de l'échantillon		0				Conforme à NEN-EN 16179
Broyeur à mâchoires		0				méthode interne
Matière sèche	%	0	87,1	0,01	+/- 1	NEN-EN15934; EN12880

Calcul des Fractions solubles

mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
mg/kg Ms	0 - 0,1	0,1	Selon norme lixiviation
mg/kg Ms	0 - 0,001	0,001	Selon norme lixiviation
mg/kg Ms	25	1	Selon norme lixiviation
mg/kg Ms	0 - 0,02	0,02	Selon norme lixiviation
mg/kg Ms	11	10	Selon norme lixiviation
mg/kg Ms	0 - 0,02	0,02	Selon norme lixiviation
mg/kg Ms	7,0	1	Selon norme lixiviation
mg/kg Ms	0 - 1000	1000	Selon norme lixiviation
mg/kg Ms	0 - 0,1	0,1	Selon norme lixiviation
mg/kg Ms	0 - 0,0003	0,0003	Selon norme lixiviation
mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
mg/kg Ms	0 - 50	50	Selon norme lixiviation
mg/kg Ms	0 - 0,02	0,02	Selon norme lixiviation
	mg/kg Ms	mg/kg Ms	Img/kg Ms 0 - 0,05 0,05 Img/kg Ms 0 - 0,1 0,1 Img/kg Ms 0 - 0,001 0,001 Img/kg Ms 25 1 Img/kg Ms 0 - 0,02 0,02 Img/kg Ms 0 - 1000 1000 Img/kg Ms 0 - 0,1 0,1 Img/kg Ms 0 - 0,003 0,003 Img/kg Ms 0 - 0,05 0,05 Img/kg Ms 0 - 0,05 0,05

٠,	Masse echantilion total interieure a 2 kg	kg	° 0,57	0					
717	Prétraitement de l'échantillon		0			Conforme à NEN-EN 16179			
7025:2017	Broyeur à mâchoires		0			méthode interne			
025	Matière sèche	%	° 87,1	0,01	+/- 1	NEN-EN15934; EN12880			
~	Calcul des Fractions solubles								
Ы	Antimoine cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation			
ò	Arsenic cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation			
EN ISO/IEC	Baryum cumulé (var. L/S)	mg/kg Ms	0 - 0,1	0,1		Selon norme lixiviation			
	Cadmium cumulé (var. L/S)	mg/kg Ms	0 - 0,001	0,001		Selon norme lixiviation			
selon	Chlorures cumulé (var. L/S)	mg/kg Ms	25	1		Selon norme lixiviation			
	Chrome cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation			
ées	COT cumulé (var. L/S)	mg/kg Ms	11	10		Selon norme lixiviation			
accréditées	Cuivre cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation			
)CLE	Fluorures cumulé (var. L/S) *)	mg/kg Ms	7,0	1		Selon norme lixiviation			
t ac	Fraction soluble cumulé (var. L/S) *)	mg/kg Ms	0 - 1000	1000		Selon norme lixiviation			
sont	Indice phénol cumulé (var. L/S)	mg/kg Ms	0 - 0,1	0,1		Selon norme lixiviation			
nts	Mercure cumulé (var. L/S)	mg/kg Ms	0 - 0,0003	0,0003		Selon norme lixiviation			
me	Molybdène cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation			
document	Nickel cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation			
	Plomb cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation			
ce	Sélénium cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation			
dans	Sulfates cumulé (var. L/S) *)	mg/kg Ms	0 - 50	50		Selon norme lixiviation			
s	Zinc cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation			
rtée	Analyses Physico-chimiques								
appo	pH-H2O		° 8,6	0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)			
S	COT Carbone Organique Total	mg/kg Ms	<1000	1000		conforme ISO 10694 (2008)			
Les activités rapportées	Prétraitement pour analyses de	es métaux				page 1 de 4			

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361967

Spécification des échantillons **BGP9 (1-2m)**

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Minéralisation à l'eau régale	0				NF-EN 16174; NF EN 13657 (déchets)
Métaux					
Minéralisation à l'eau régale Métaux Arsenic (As) Cadmium (Cd) Chrome (Cr) Cuivre (Cu) Mercure (Hg) Nickel (Ni) Plomb (Pb) Zinc (Zn) Hydrocarbures Aromatique Naphtalène Acénaphtylène Acénaphtène Phénanthrène Anthracène	mg/kg Ms	9,3	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	35	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	23	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Nickel (Ni)	mg/kg Ms	35	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	14	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	39	1	+/- 22	Conforme à EN-ISO 11885, EN 16174
Hydrocarbures Aromatique	s Polycycliques (IS	SO)			
Naphtalène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Fluorène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Phénanthrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Benzo(a)anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Chrysène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
D (1)(1 (1)	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Benzo(b)fluorantnene Benzo(k)fluorantnene Benzo(a)pyrène Dibenzo(a,h)anthracène Benzo(g,h,i)pérylène Indéno(1,2,3-cd)pyrène HAP (6 Borneff) - somme Somme HAP (VROM) HAP (EPA) - somme Composés aromatiques Benzène Toluène					·
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181 équivalent à NF EN 16181
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05		
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
HAP (6 Borneff) - somme	mg/kg Ms	n.d.			équivalent à NF EN 16181
Somme HAP (VROM)	mg/kg Ms	n.d.			équivalent à NF EN 16181
HAP (EPA) - somme	mg/kg Ms	n.d.			équivalent à NF EN 16181
Composés aromatiques					
Benzène	mg/kg Ms	<0,050	0,05		Conforme à ISO 22155
	mg/kg Ms	<0,050	0,05		Conforme à ISO 22155
Ethylhonzóno	mg/kg Ms	<0,050	0,05		Conforme à ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	0,1		Conforme à ISO 22155
o-Xylène	mg/kg Ms	<0,050	0,05		Conforme à ISO 22155
Somme Xylènes	mg/kg Ms	n.d.	0,00		Conforme à ISO 22155
BTEX total	*) mg/kg Ms	n.d.			Conforme à ISO 22155
Hydrocarbures totaux (ISO)					
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20		ISO 16703
Fraction C10-C12	*) mg/kg Ms	<4,0	4		ISO 16703
Fraction C12-C16	*) mg/kg Ms	<4,0 <4,0	4		ISO 16703
Fraction C16-C20	*) mg/kg Ms	<4,0 <2,0	2		ISO 16703
m,p-Xylène o-Xylène Somme Xylènes BTEX total Hydrocarbures totaux (ISO) Hydrocarbures totaux C10-C40 Fraction C10-C12 Fraction C12-C16 Fraction C16-C20 Fraction C20-C24 Fraction C24-C28	*) mg/kg Ms	4,1		+/- 21	ISO 16703
Fraction C20-C24			2		
Fraction C24-C28	*) mg/kg Ms	2,8	2	+/- 21	ISO 16703

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361967

Spécification des échantillons **BGP9 (1-2m)**

*.		Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
symbole " *)	Fraction C28-C32	*) mg/kg Ms	<2,0	2		ISO 16703
g		*) mg/kg Ms	<2,0	2		ISO 16703
šyn	Fraction C36-C40	*) mg/kg Ms	<2,0	2		ISO 16703
<u>e</u>	Polychlorobiphényles					
par	Somme 6 PCB	mg/kg Ms	n.d.			NEN-EN 16167
es	Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.			NEN-EN 16167
ifié	PCB (28)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
ent	PCB (52)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
<u>+</u>	PCB (101)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
Son	PCB (118)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
Se	PCB (138)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
lité	PCB (153)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
réo	PCB (180)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
acc	Analyses sur éluat après lixivi	ation		,		
on	L/S cumulé	ml/g	10,0	0,1		Selon norme lixiviation
S	Conductivité électrique	μS/cm	80,8	5	+/- 10	Selon norme lixiviation
vité	рН	μο/οιιι	8,4	0	+/- 5	Selon norme lixiviation
cţi	Température	°C	20,0	0	1, 0	Selon norme lixiviation
Seules les activités non accréditées sont identifiées par le	Analyses Physico-chimiques		20,0			
S	Résidu à sec	mg/l	<100	100		Equivalent à NF EN ISO 15216
JK.	Fluorures (F)		0,7	0,1	+/- 10	Conforme à ISO 10359-1, conforme
	` ,	mg/l	0,7	0, 1	+/- 10	à EN 16192
17025:2017.	Indice phénol	mg/l	<0,010	0,01		NEN-EN 16192
5	Chlorures (CI)	mg/l	2,5	0,1	+/- 10	Conforme à ISO 15923-1
)25	Sulfates (SO4)	mg/l	<5,0	5		Conforme à ISO 15923-1
17(COT	mg/l	1,1	11	+/- 10	conforme EN 16192
	Métaux sur éluat					
SO/I	Antimoine (Sb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
EN	Arsenic (As)	µg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
elon	Baryum (Ba)	μg/l	<10	10		Conforme à EN-ISO 17294-2 (2004)
es s	Cadmium (Cd)	µg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
rédite	Chrome (Cr)	µg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
accı	Cuivre (Cu)	µg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
ont	Mercure (Hg)	μg/l	<0,03	0,03		NEN-EN 1483 (2007)
ent s	Molybdène (Mo)	µg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
ume	Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
op e	Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
INS C	Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
ées dans ce document sont accréditées selon EN ISO/IEC	Zinc (Zn)	µg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. Le calcul de l' incertitude de mesure combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d'élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

es activités

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361967

Spécification des échantillons

BGP9 (1-2m)

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 22.02.2021 Fin des analyses: 26.02.2021

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

Lognenet

AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156 Chargée relation clientèle

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

BURGEAP (LYON 69) Monsieur Clément BERRY 143 Avenue de Verdun 92130 ISSY-LES-MOULINEAUX **FRANCE**

> Date 02.03.2021 N° Client 35004351

> > Méthode

méthode interne

NEN-EN15934; EN12880

(déchets)

RAPPORT D'ANALYSES 1016265 - 361968

Unité

sont identifiées par le symbole " *) ". n° Cde 1016265 BC21-981 / CSSPCE210146 - ITM

N° échant. 361968 Solide / Eluat

Date de validation 19.02.2021 Prélèvement 19.02.2021 15:44

Prélèvement par: Client

Spécification des échantillons BGP9 (2.2-3.2m)

Prétraitement des échantillons Prétraitement de l'échantillon Conforme à NEN-EN 16179

۰

Résultat

Limite

Quant.

0,01

Incert.

Résultat %

+/- 1

Matière sèche %

Prétraitement pour analyses des métaux NF-EN 16174; NF EN 13657 Minéralisation à l'eau régale

89,1

Métaux
Arconic (Ac)

Broyeur à mâchoires

les activités non accréditées

Senles

Arsenic (As)	mg/kg Ms	5,3	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	25	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	13	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Nickel (Ni)	mg/kg Ms	26	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	7,1	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	27	1	+/- 22	Conforme à EN-ISO 11885, EN

					(5.00.10.0)
Métaux					
Arsenic (As)	mg/kg Ms	5,3	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	25	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	13	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Nickel (Ni)	mg/kg Ms	26	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	7,1	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	27	1	+/- 22	Conforme à EN-ISO 11885, EN 16174
Hydrocarbures Aromatiqu	es Polycycliques (IS	SO)			
Naphtalène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Fluorène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Phénanthrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Benzo(a)anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Chrysène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Berizelligitaerariere	mg/ng mo				
Benzo(a)pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181

page 1 de 2

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361968

Spécification des échantillons BGP9 (2.2-3.2m)

* ".		Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
<u>o</u>	Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
ဓ္ဓ	Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
symbole	HAP (6 Borneff) - somme	mg/kg Ms	n.d.			équivalent à NF EN 16181
<u>a</u>	Somme HAP (VROM)	mg/kg Ms	n.d.			équivalent à NF EN 16181
par	HAP (EPA) - somme	mg/kg Ms	n.d.			équivalent à NF EN 16181
_	Composés aromatiques					
sont identifiées	Benzène	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
Jen	Toluène	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
, <u>;</u>	Ethylbenzène	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
SOF	m,p-Xylène	mg/kg Ms	<0,10	0,1		Conforme à ISO 22155
es	o-Xylène	mg/kg Ms	<0,050	0,05		Conforme à ISO 22155
dité	Somme Xylènes	mg/kg Ms	n.d.			Conforme à ISO 22155
accréditées	Hydrocarbures totaux (ISO)					
	Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20		ISO 16703
non	Fraction C10-C12	mg/kg Ms	<4,0	4		ISO 16703
	Fraction C12-C16	mg/kg Ms	<4,0	4		ISO 16703
activités	Fraction C16-C20	mg/kg Ms	<2,0	2		ISO 16703
act	Fraction C20-C24	mg/kg Ms	<2,0	2		ISO 16703
les	Fraction C24-C28	mg/kg Ms	<2,0	2		ISO 16703
	Fraction C28-C32	mg/kg Ms	<2,0	2		ISO 16703
eules		mg/kg Ms	<2,0	2		ISO 16703
7. S	Fraction C36-C40	mg/kg Ms	<2,0	2		ISO 16703

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé.
Le calcul de l' incertitude de mesure combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d' élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Début des analyses: 22.02.2021 Fin des analyses: 25.02.2021

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156 Chargée relation clientèle

Dognenut

ppa. Marc van Gelder Dr. Paul Wimmer

es activités rapportées dans ce document sont accréditées selon EN ISO/IEC 17025:201

sont identifiées par le symbole " *) ".

es activités rapportées dans ce document sont accréditées selon EN ISO/IEC 17025:2017. Seules les activités non accréditées

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Your labs. Your service.

BURGEAP (LYON 69) Monsieur Clément BERRY 143 Avenue de Verdun 92130 ISSY-LES-MOULINEAUX FRANCE

> Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361969

n° Cde 1016265 BC21-981 / CSSPCE210146 - ITM

N° échant. 361969 Solide / Eluat

 Date de validation
 19.02.2021

 Prélèvement
 19.02.2021 15:44

Prélèvement par: Client

Spécification des échantillons BGP10 (0-1m)

•			•	•			
		Unité		Résultat	Limite Quant.	Incert. Résultat %	Méthode
Lixiviation							
Fraction >4mm (EN12457-2)		% Ms		13,0	0,1		Selon norme lixiviation
Lixiviation (EN 12457-2)			0				NF EN 12457-2
Masse brute Mh pour lixiviation	*)	g	۰	110	1		Selon norme lixiviation
Volume de lixiviant L ajouté pour l'extraction	*)	ml		900	1		Selon norme lixiviation
Prétraitement des échantillo	ns						
Masse échantillon total inférieure à 2 kg		kg	•	0,71	0		
Prétraitement de l'échantillon			0	,			Conforme à NEN-EN 16179
Broyeur à mâchoires			0				méthode interne
Matière sèche		%	۰	83,6	0,01	+/- 1	NEN-EN15934; EN12880
Calcul des Fractions soluble	s						
Antimoine cumulé (var. L/S)	*)	mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Arsenic cumulé (var. L/S)	*)	mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Baryum cumulé (var. L/S)	*)	mg/kg Ms		0 - 0,1	0,1		Selon norme lixiviation
Cadmium cumulé (var. L/S)	*)	mg/kg Ms		0 - 0,001	0,001		Selon norme lixiviation
Chlorures cumulé (var. L/S)	*)	mg/kg Ms		11	1		Selon norme lixiviation
Chrome cumulé (var. L/S)	*)	mg/kg Ms		0 - 0,02	0,02		Selon norme lixiviation
COT cumulé (var. L/S)	*)	mg/kg Ms		80	10		Selon norme lixiviation
Cuivre cumulé (var. L/S)	*)	mg/kg Ms		0,09	0,02		Selon norme lixiviation
Fluorures cumulé (var. L/S)	*)	mg/kg Ms		1,0	1		Selon norme lixiviation
Fraction soluble cumulé (var. L/S)	*)	mg/kg Ms		0 - 1000	1000		Selon norme lixiviation
Indice phénol cumulé (var. L/S)	*)	mg/kg Ms		0 - 0,1	0,1		Selon norme lixiviation
Mercure cumulé (var. L/S)	*)	mg/kg Ms		0 - 0,0003	0,0003		Selon norme lixiviation
Molybdène cumulé (var. L/S)		mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Nickel cumulé (var. L/S)	*)	mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Plomb cumulé (var. L/S)	*)	mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Sélénium cumulé (var. L/S)	*)	mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Sulfates cumulé (var. L/S)	*)	mg/kg Ms		0 - 50	50		Selon norme lixiviation
Zinc cumulé (var. L/S)	*)	mg/kg Ms		0,04	0,02		Selon norme lixiviation
Analyses Physico-chimiques	5						
pH-H2O			0	7,6	0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)

21000

1000

+/- 16

Prétraitement pour analyses des métaux

conforme ISO 10694 (2008)

COT Carbone Organique Total

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361969

Spécification des échantillons **BGP10 (0-1m)**

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Minéralisation à l'eau régale	۰				NF-EN 16174; NF EN 1365 (déchets)
Métaux		1			(400.000)
Arsenic (As)	mg/kg Ms	17	1	+/- 15	Conforme à EN-ISO 11885, 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, 16174
Chrome (Cr)	mg/kg Ms	28	0,2	+/- 12	Conforme à EN-ISO 11885, 16174
Cuivre (Cu)	mg/kg Ms	11	0,2	+/- 20	Conforme à EN-ISO 11885, 16174
Mercure (Hg)	mg/kg Ms	0,07	0,05	+/- 20	Conforme à ISO 16772 et 1 16174
Nickel (Ni)	mg/kg Ms	18	0,5	+/- 11	Conforme à EN-ISO 11885, 16174
Plomb (Pb)	mg/kg Ms	71	0,5	+/- 11	Conforme à EN-ISO 11885, 16174
Zinc (Zn)	mg/kg Ms	36	1	+/- 22	Conforme à EN-ISO 11885, 16174
Hydrocarbures Aromatique	s Polycycliques (ISC))			-
Naphtalène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 161
Acénaphtylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 161
Acénaphtène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 161
Fluorène	mg/kg Ms	<0,050	0,05		éguivalent à NF EN 161
Phénanthrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 161
Anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 161
Fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 161
Pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 161
Benzo(a)anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 161
Chrysène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 161
Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 161
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 161
Benzo(a)pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 161
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 161
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 161
					équivalent à NF EN 161
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 161
HAP (6 Borneff) - somme	mg/kg Ms	n.d.			équivalent à NF EN 161
Somme HAP (VROM)	mg/kg Ms	n.d.			
HAP (EPA) - somme	mg/kg Ms	n.d.			équivalent à NF EN 161
Composés aromatiques					
Benzène	mg/kg Ms	<0,050	0,05		Conforme à ISO 2215
Toluène	mg/kg Ms	<0,050	0,05		Conforme à ISO 221
Ethylbenzène	mg/kg Ms	<0,050	0,05		Conforme à ISO 2215
m,p-Xylène	mg/kg Ms	<0,10	0,1		Conforme à ISO 2215
o-Xylène	mg/kg Ms	<0,050	0,05		Conforme à ISO 221
Somme Xylènes	mg/kg Ms	n.d.			Conforme à ISO 221
BTEX total	*) mg/kg Ms	n.d.			Conforme à ISO 221
Hydrocarbures totaux (ISO)				1 , -: 1	
Hydrocarbures totaux C10-C40	mg/kg Ms	26,1	20	+/- 21	ISO 16703
Fraction C10-C12	*) mg/kg Ms	<4,0	4		ISO 16703
Fraction C12-C16	*) mg/kg Ms	<4,0	4		ISO 16703
Fraction C16-C20	*) mg/kg Ms	2,5	2	+/- 21	ISO 16703
Fraction C20-C24	*) mg/kg Ms	<2,0	2		ISO 16703
Fraction C24-C28	*) mg/kg Ms	4,9	2	+/- 21	ISO 16703

RvA L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361969

Spécification des échantillons **BGP10 (0-1m)**

*.		Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
symbole " *)	Fraction C28-C32	*) mg/kg Ms	7,8	2		ISO 16703
g	Fraction C32-C36	*) mg/kg Ms	3,7	2	+/- 21	ISO 16703
syn	Fraction C36-C40	*) mg/kg Ms	<2,0	2		ISO 16703
<u>e</u>	Polychlorobiphényles					
par	Somme 6 PCB	mg/kg Ms	n.d.			NEN-EN 16167
es	Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.			NEN-EN 16167
tifié	PCB (28)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
len	PCB (52)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
it ic	PCB (101)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
sor	PCB (118)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
es	PCB (138)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
dité	PCB (153)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
cré	PCB (180)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
ä	Analyses sur éluat après lixivi	ation				
nou	L/S cumulé	ml/g	10,0	0,1		Selon norme lixiviation
ès r	Conductivité électrique	μS/cm	82,5	5	+/- 10	Selon norme lixiviation
ivité	pH		7,6	0	+/- 5	Selon norme lixiviation
acti	Température	°C	19,6	0		Selon norme lixiviation
es	Analyses Physico-chimiques	sur éluat				
les	Résidu à sec	mg/l	<100	100		Equivalent à NF EN ISO 15216
Seules les activités non accréditées sont identifiées par le	Fluorures (F)	mg/l	0,1	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
17025:2017.	Indice phénol	mg/l	<0,010	0,01		NEN-EN 16192
50	Chlorures (CI)	mg/l	1,1	0,1	+/- 10	Conforme à ISO 15923-1
)25	Sulfates (SO4)	mg/l	<5,0	5		Conforme à ISO 15923-1
17	COT	mg/l	8,0	11	+/- 10	conforme EN 16192
Ξ	Métaux sur éluat					
100	Antimoine (Sb)	µg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Ш	Arsenic (As)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
elon	Baryum (Ba)	μg/l	<10	10		Conforme à EN-ISO 17294-2 (2004)
ées s	Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
rédité	Chrome (Cr)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
accı	Cuivre (Cu)	μg/l	9,3	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)
ont	Mercure (Hg)	μg/l	<0,03	0,03		NEN-EN 1483 (2007)
nts	Molybdène (Mo)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
nme	Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
e doc	Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
INS CO	Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
ées dans ce document sont accréditées selon EN ISO/IEC	Zinc (Zn)	μg/l	3,7	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. Le calcul de l' incertitude de mesure combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d'élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

es activités

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361969

Spécification des échantillons BGP10 (0-1m)

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 22.02.2021 Fin des analyses: 26.02.2021

Chargée relation clientèle

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156

Lognenet

es activités rapportées dans ce document sont accréditées selon EN ISO/IEC 17025:2017. Seules les activités non accréditées sont identifiées par le symbole "*)

sont i

les activités non accréditées

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

BURGEAP (LYON 69) Monsieur Clément BERRY 143 Avenue de Verdun 92130 ISSY-LES-MOULINEAUX **FRANCE**

> Date 02.03.2021 N° Client 35004351

> > Méthoda

RAPPORT D'ANALYSES 1016265 - 361970

l Initá

identifiées par le symbole " *) ". 1016265 BC21-981 / CSSPCE210146 - ITM n° Cde

N° échant. 361970 Solide / Eluat

Date de validation 19.02.2021 Prélèvement 19.02.2021 15:44

Prélèvement par: Client

Spécification des échantillons **BGP10 (1-2m)**

	Office	11000	iitat Quant.	1 (Countar 70	victiode
Prétraitement des échantill	ons				
Prétraitement de l'échantillon		•			Conforme à NEN-EN 16

Broyeur à mâchoires méthode interne Matière sèche % 87,2 0,01 +/- 1 NEN-EN15934; EN12880

Récultat

Limite

Quant

Incert.

Récultat %

Minéralisation à l'eau régale	0	NF-EN 16174; NF EN 13657 (déchets)
Métaux		

	Métaux					
,	Arsenic (As)	mg/kg Ms	7,7	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
2	Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, EN 16174
)	Chrome (Cr)	mg/kg Ms	39	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
9	Cuivre (Cu)	mg/kg Ms	13	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
•	Mercure (Ha)	ma/ka Ms	-0.05	0.05		Conforme à ISO 16772 et EN

<u>2</u>				,,	.,	16174
	Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
selor	Nickel (Ni)	mg/kg Ms	27	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
ees	Plomb (Pb)	mg/kg Ms	15	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
redit	Zinc (Zn)	mg/kg Ms	35	1	+/- 22	Conforme à EN-ISO 11885, EN 16174

Prétraitement pour analyse Minéralisation à l'eau régale	•				NF-EN 16174; NF EN 13657 (déchets)
Métaux					
Arsenic (As)	mg/kg Ms	7,7	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	39	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	13	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Nickel (Ni)	mg/kg Ms	27	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	15	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	35	1	+/- 22	Conforme à EN-ISO 11885, El 16174
Hydrocarbures Aromatique	s Polycycliques (IS	SO)			
Naphtalène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Fluorène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Phénanthrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Benzo(a)anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Chrysène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Anthracène Fluoranthène Pyrène Benzo(a)anthracène Chrysène Benzo(b)fluoranthène Benzo(k)fluoranthène Benzo(a)pyrène Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181

page 1 de 2 **RvA** L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361970

BGP10 (1-2m) Spécification des échantillons

į.				Limite	Incert.	
*		Unité	Résultat	Quant.	Résultat %	Méthode
<u>e</u>	Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
ઠ્ટ	Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
symbole	HAP (6 Borneff) - somme	mg/kg Ms	n.d.			équivalent à NF EN 16181
<u>0</u>	Somme HAP (VROM)	mg/kg Ms	n.d.			équivalent à NF EN 16181
par	HAP (EPA) - somme	mg/kg Ms	n.d.			équivalent à NF EN 16181
es	Composés aromatiques					
sont identifié	Benzène	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
Jen	Toluène	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
Ę	Ethylbenzène	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
SOF	m,p-Xylène	mg/kg Ms	<0,10	0,1		Conforme à ISO 22155
es	o-Xylène	mg/kg Ms	<0,050	0,05		Conforme à ISO 22155
dité	Somme Xylènes	mg/kg Ms	n.d.			Conforme à ISO 22155
accréditées	Hydrocarbures totaux (ISO)					
	Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20		ISO 16703
non	Fraction C10-C12	mg/kg Ms	<4,0	4		ISO 16703
	Fraction C12-C16	mg/kg Ms	<4,0	4		ISO 16703
activités	Fraction C16-C20	mg/kg Ms	<2,0	2		ISO 16703
act	Fraction C20-C24	mg/kg Ms	<2,0	2		ISO 16703
les	Fraction C24-C28	mg/kg Ms	<2,0	2		ISO 16703
	Fraction C28-C32	mg/kg Ms	<2,0	2		ISO 16703
enles	Fraction C32-C36	mg/kg Ms	<2,0	2		ISO 16703
Ž.	Fraction C36-C40	mg/kg Ms	<2,0	2		ISO 16703

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. Le calcul de l'incertitude de mesure combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l'expression de l'incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d'élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Début des analyses: 22.02.2021 Fin des analyses: 25.02.2021

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156 Chargée relation clientèle

Dognenut

es activités rapportées dans ce document sont accréditées selon EN ISO/IEC 17025:2017

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Your labs. Your service.

BURGEAP (LYON 69) Monsieur Clément BERRY 143 Avenue de Verdun 92130 ISSY-LES-MOULINEAUX **FRANCE**

> Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361971

sont identifiées par le symbole " *) ". n° Cde 1016265 BC21-981 / CSSPCE210146 - ITM

N° échant. 361971 Solide / Eluat

Date de validation 19.02.2021 Prélèvement 19.02.2021 15:44

Prétraitement des échantillons								
Prétraitement de l'échantillon		•				Conforme à NEN-EN 16179		
Broyeur à mâchoires		•				méthode interne		
Matière sèche	%	۰	95,9	0,01	+/- 1	NEN-EN15934; EN12880		

· · · · · · · · · · · · · · · · · · ·								
Minéralisation à l'eau régale	•	NF-EN 16174; NF EN 13657						
)		(déchets)						

Métaux					
Arsenic (As)	mg/kg Ms	3,5	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	23	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	8,0	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Nickel (Ni)	mg/kg Ms	18	0,5	+/- 11	Conforme à EN-ISO 11885, EN

Prélèvement par:	Clie				
Spécification des échantillons	BG	P10 (4-5m)			
	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Prétraitement des échantillon	ıs				
Prétraitement de l'échantillon		0			Conforme à NEN-EN 161
Broyeur à mâchoires		0			méthode interne
Matière sèche	%	° 95,9	0,01	+/- 1	NEN-EN15934; EN128
Prétraitement pour analyses	des métaux				
Minéralisation à l'eau régale		0			NF-EN 16174; NF EN 1365 (déchets)
Métaux					
Arsenic (As)	mg/kg Ms	3,5	1	+/- 15	Conforme à EN-ISO 11885, I 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, 16174
Chrome (Cr)	mg/kg Ms	23	0,2	+/- 12	Conforme à EN-ISO 11885, 16174
Cuivre (Cu)	mg/kg Ms	8,0	0,2	+/- 20	Conforme à EN-ISO 11885, 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et E 16174
Nickel (Ni)	mg/kg Ms	18	0,5	+/- 11	Conforme à EN-ISO 11885, 16174
Plomb (Pb)	mg/kg Ms	7,9	0,5	+/- 11	Conforme à EN-ISO 11885, 16174
Zinc (Zn)	mg/kg Ms	23	1	+/- 22	Conforme à EN-ISO 11885, 16174
Hydrocarbures Aromatiques	Polycyclique	es (ISO)			
Naphtalène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Acénaphtylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Acénaphtène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Fluorène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Phénanthrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Benzo(a)anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Chrysène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Benzo(a)pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618

page 1 de 2

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361971

BGP10 (4-5m) Spécification des échantillons

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode		
	mg/kg Ms	<0,050	0.05		équivalent à NF EN 16181		
Benzo(g,h,i)pérylène Indéno(1,2,3-cd)pyrène HAP (6 Borneff) - somme Somme HAP (VROM) HAP (EPA) - somme	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181		
HAP (6 Borneff) - somme	mg/kg Ms	n.d.	0,00		équivalent à NF EN 16181		
Somme HAP (VROM)	mg/kg Ms	n.d.			équivalent à NF EN 16181		
HAP (EPA) - somme	mg/kg Ms	n.d.			équivalent à NF EN 16181		
	ilig/kg ivis	II.u.			equivalent a Ni EN 10101		
Composés aromatiques							
Benzène	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155		
Toluène	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155		
Ethylbenzène	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155		
m,p-Xylène	mg/kg Ms	<0,10	0,1		Conforme à ISO 22155		
o-Xylène	mg/kg Ms	<0,050	0,05		Conforme à ISO 22155		
Somme Xylènes	mg/kg Ms	n.d.			Conforme à ISO 22155		
Hydrocarbures totaux (IS	SO)						
Hydrocarbures totaux C10-C4		<20,0	20		ISO 16703		
Fraction C10-C12	*) mg/kg Ms	<4,0	4		ISO 16703		
Fraction C12-C16	*) mg/kg Ms	<4,0	4		ISO 16703		
Fraction C16-C20	*) mg/kg Ms	<2,0	2		ISO 16703		
Fraction C20-C24	*) mg/kg Ms	<2,0	2		ISO 16703		
Fraction C24-C28	*) mg/kg Ms	<2,0	2		ISO 16703		
Fraction C28-C32	*) mg/kg Ms	<2,0	2		ISO 16703		
Fraction C32-C36	*) mg/kg Ms	<2,0 <2,0	2		ISO 16703		
Fraction C36-C40	*) mg/kg Ms	<2,0 <2,0	2		ISO 16703		
Les analyses réalisées sur solide l'échantillon original.	sont calculées sur la ma	tière sèche. Les analy	rses marqu	ıées ° sont quan	tifiées par rapport à		
Début des analyses: 22.02.2021 Fin des analyses: 25.02.2021							
Les résultats portent exclusiveme correspondent à l'échantillon tel d							
Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée. AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156 Chargée relation clientèle							
AL-West B.V. Melle Mylè Chargée relation clientèl		+33/380680156					
					page 2 de 2		

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Your labs. Your service.

BURGEAP (LYON 69) Monsieur Clément BERRY 143 Avenue de Verdun 92130 ISSY-LES-MOULINEAUX **FRANCE**

> Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361972

sont identifiées par le symbole " *) ". n° Cde 1016265 BC21-981 / CSSPCE210146 - ITM

N° échant. 361972 Solide / Eluat

Date de validation 19.02.2021 Prélèvement 19.02.2021 15:44

Prélèvement par: Client

Spécification des échantillons **BGP11 (0-1m)**

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
	Ornio	rtoomat	Quant.	rtooditat 70	Welledo
Lixiviation					
Fraction >4mm (EN12457-2)	% Ms	<0,1	0,1		Selon norme lixiviation
Lixiviation (EN 12457-2)		0			NF EN 12457-2
	*) g	° 110	1		Selon norme lixiviation
Volume de lixiviant L ajouté pour l'extraction	*) ml	900	1		Selon norme lixiviation
Prétraitement des échantillons	5				
Masse échantillon total inférieure à 2 kg	kg	° 0,72	0		
Prétraitement de l'échantillon		0			Conforme à NEN-EN 16179
Matière sèche	%	° 84,4	0,01	+/- 1	NEN-EN15934; EN12880
Calcul des Fractions solubles					
Antimoine cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Arsenic cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Baryum cumulé (var. L/S)	*) mg/kg Ms	0 - 0,1	0,1		Selon norme lixiviation
	*) mg/kg Ms	0 - 0,001	0,001		Selon norme lixiviation
Chlorures cumulé (var. L/S)	*) mg/kg Ms	15	1		Selon norme lixiviation
Chrome cumulé (var. L/S)	*) mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation
COT cumulé (var. L/S)	*) mg/kg Ms	67	10		Selon norme lixiviation
Cuivre cumulé (var. L/S)	*) mg/kg Ms	0,16	0,02		Selon norme lixiviation
Fluorures cumulé (var. L/S)	*) mg/kg Ms	2,0	1		Selon norme lixiviation
Fraction soluble cumulé (var. L/S)	*) mg/kg Ms	0 - 1000	1000		Selon norme lixiviation
Indice phénol cumulé (var. L/S)	*) mg/kg Ms	0 - 0,1	0,1		Selon norme lixiviation
Mercure cumulé (var. L/S)	*) mg/kg Ms	0 - 0,0003	0,0003		Selon norme lixiviation
Molybdène cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Nickel cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Plomb cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Sélénium cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Sulfates cumulé (var. L/S)	*) mg/kg Ms	0 - 50	50		Selon norme lixiviation
Zinc cumulé (var. L/S)	mg/kg Ms	0,04	0,02		Selon norme lixiviation
Analyses Physico-chimiques					
pH-H2O		° 6,7	0,1	+/- 10	Cf. NEN-ISO 10390 (sol
	// 1.4	2000	4000	/ 40	uniquement)

9600

1000

+/- 16

Kamer van Koophandel Nr. 08110898 ppa. Marc VAT/BTW-ID-Nr.: Dr. Paul V

COT Carbone Organique Total

Minéralisation à l'eau régale

ppa. Marc van Gelder Dr. Paul Wimmer

Prétraitement pour analyses des métaux

mg/kg Ms

es activités

rapportées dans ce document sont accréditées selon EN ISO/IEC 17025:2017. Seules les activités non accréditées

conforme ISO 10694 (2008)

NF-EN 16174; NF EN 13657

(déchets)

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361972

Spécification des échantillons **BGP11 (0-1m)**

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Métaux					
Arsenic (As)	mg/kg Ms	18	1	+/- 15	Conforme à EN-ISO 11885, E 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, E 16174
Chrome (Cr)	mg/kg Ms	25	0,2	+/- 12	Conforme à EN-ISO 11885, E 16174
Cuivre (Cu)	mg/kg Ms	8,8	0,2	+/- 20	Conforme à EN-ISO 11885, E 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Nickel (Ni)	mg/kg Ms	14	0,5	+/- 11	Conforme à EN-ISO 11885, E
Plomb (Pb)	mg/kg Ms	27	0,5	+/- 11	Conforme à EN-ISO 11885, E 16174
Zinc (Zn)	mg/kg Ms	31	1	+/- 22	Conforme à EN-ISO 11885, E 16174
Hydrocarbures Aromatique	es Polycycliques (I	SO)			
Naphtalène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Acénaphtylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Acénaphtène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Fluorène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Phénanthrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Benzo(a)anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Chrysène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Benzo(a)pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
HAP (6 Borneff) - somme	mg/kg Ms	n.d.			équivalent à NF EN 1618
Somme HAP (VROM)	mg/kg Ms	n.d.			équivalent à NF EN 1618
HAP (EPA) - somme	mg/kg Ms	n.d.			équivalent à NF EN 1618
Composés aromatiques Benzène	mg/kg Ms	-0.050	0.05		Conforme à ISO 2215
Toluène	mg/kg Ms	<0,050 <0,050	0,05 0,05		Conforme à ISO 2215
	mg/kg Ms	<0,050	0,05		Conforme à ISO 2215
Ethylbenzène	mg/kg Ms	<0,030	0,05		Conforme à ISO 2215
m,p-Xylène					
o-Xylène Somme Xylènes	mg/kg Ms mg/kg Ms	<0,050 n.d.	0,05		Conforme à ISO 2215 Conforme à ISO 2215
BTEX total	*) mg/kg Ms	n.d.			Conforme à ISO 2215
COHV					
Chlorure de Vinyle	mg/kg Ms	<0,02	0,02		Conforme à ISO 2215
Dichlorométhane	mg/kg Ms	<0,05	0,05		Conforme à ISO 2215
Trichlorométhane	mg/kg Ms	<0,05	0,05		Conforme à ISO 2215
Tétrachlorométhane	mg/kg Ms	<0,05	0,05		Conforme à ISO 2215
Trichloroéthylène	mg/kg Ms	<0,05	0,05		Conforme à ISO 2215
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05		Conforme à ISO 2215
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05		Conforme à ISO 2215
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05		Conforme à ISO 2215

RvA L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361972

Spécification des échantillons **BGP11 (0-1m)**

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
1,1-Dichloroéthane	mg/kg Ms	<0,10	0,1		Conforme à ISO 2215
1,2-Dichloroéthane	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025		Conforme à ISO 2215
1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,1		ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025		Conforme à ISO 2215
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.			Conforme à ISO 2215
Hydrocarbures totaux (ISO)					
Hydrocarbures totaux C10-C40	mg/kg Ms	42,4	20	+/- 21	ISO 16703
Fraction C10-C12	*) mg/kg Ms	<4,0	4		ISO 16703
Fraction C12-C16	*) mg/kg Ms	<4,0	4		ISO 16703
Fraction C16-C20	*) mg/kg Ms	4,5	2	+/- 21	ISO 16703
Fraction C20-C24	*) mg/kg Ms	7,6	2	+/- 21	ISO 16703
Fraction C24-C28	*) mg/kg Ms	8,3	2	+/- 21	ISO 16703
Fraction C28-C32	*) mg/kg Ms	11	2		ISO 16703
Fraction C32-C36	*) mg/kg Ms	5,9	2	+/- 21	ISO 16703
Fraction C36-C40	*) mg/kg Ms	<2,0	2		ISO 16703
Polychlorobiphényles					
Somme 6 PCB	mg/kg Ms	n.d.			NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.			NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (118)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (138)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (153)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (180)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
Analyses sur éluat après lixiv	viation				
L/S cumulé	ml/g	10,0	0,1		Selon norme lixiviation
Conductivité électrique	μS/cm	54,5	5	+/- 10	Selon norme lixiviation
pH		7,3	0	+/- 5	Selon norme lixiviation
Température	°C	19,6	0		Selon norme lixiviation
Analyses Physico-chimiques	sur éluat	, 1			
Résidu à sec	mg/I	<100	100		Equivalent à NF EN ISO 152
Fluorures (F)	mg/l	0,2	0,1	+/- 10	Conforme à ISO 10359-1, confo à EN 16192
Indice phénol	mg/l	<0,010	0,01		NEN-EN 16192
Chlorures (CI)	mg/l	1,5	0,1	+/- 10	Conforme à ISO 15923
Sulfates (SO4)	mg/l	<5,0	5	17 10	Conforme à ISO 15923
COT	mg/l	6,7	1	+/- 10	conforme EN 16192
Métaux sur éluat	1	-,-			
Antimoine (Sb)	µg/l	<5,0	5		Conforme à EN-ISO 17294-
Arsenic (As)	μg/l	<5,0	5		(2004) Conforme à EN-ISO 17294-
Baryum (Ba)	μg/l	<10	10		(2004) Conforme à EN-ISO 17294-
Cadmium (Cd)	µg/l	<0,1	0,1		(2004) Conforme à EN-ISO 17294-:
Chrome (Cr)		<2,0	2		(2004) Conforme à EN-ISO 17294-
. ,	µg/l			./ 40	(2004) Conforme à EN-ISO 17294-
Cuivre (Cu) Mercure (Hg)	μg/l	16 <0,03	0,03	+/- 10	(2004)
	μg/l		~ ~~	1	NEN-EN 1483 (2007)

RvA L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361972

Spécification des échantillons BGP11 (0-1m)

*.		Unité	Résultat	Quant.	ncert. Résultat %	Méthode
symbole "	Molybdène (Mo) Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
	Nickel (Ni)	µg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
<u>e</u>	Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
s ba	Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
ntifiées	Zinc (Zn)	µg/l	4,3	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé.
Le calcul de l' incertitude de mesure combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d' élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 22.02.2021 Fin des analyses: 26.02.2021

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

M. Magnenet

AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156 Chargée relation clientèle

es activités rapportées dans ce document sont accréditées selon EN ISO/IEC 17025:2017. Seules les activités non accréditées

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Your labs. Your service.

BURGEAP (LYON 69) Monsieur Clément BERRY 143 Avenue de Verdun 92130 ISSY-LES-MOULINEAUX **FRANCE**

> Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361973

1016265 BC21-981 / CSSPCE210146 - ITM n° Cde

N° échant. 361973 Solide / Eluat

Date de validation 19.02.2021 Prélèvement 19.02.2021 15:44

Prélèvement par: Client

BGP11 (1-2m) Spécification des échantillons

Limite Incert. Unité Résultat Quant. Résultat % Méthode

Prétraitement des échantillons

Prétraitement de l'échantillon Conforme à NEN-EN 16179 +/- 1 NEN-EN15934; EN12880 Matière sèche % 80,9 0,01

Prétraitement pour analyses des métaux

Ś	Milieralisation a read regale			(déchets)
Š	Métaux			

wetaux	X
Arsenic	(As)

sont identifiées par le symbole " *) ".

activités non accréditées

5	Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, EN 16174
-	Chrome (Cr)	mg/kg Ms	43	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
,	Cuivre (Cu)	mg/kg Ms	12	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
2	Mercure (Hg)	mg/kg Ms	0,06	0,05	+/- 20	Conforme à ISO 16772 et EN 16174
1	Nickel (Ni)	mg/kg Ms	44	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Ś	Plomb (Pb)	mg/kg Ms	10	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
	Zinc (Zn)	mg/kg Ms	44	1	+/- 22	Conforme à EN-ISO 11885, EN

Minéralisation à l'eau régale Métaux	0				NF-EN 16174; NF EN 13657 (déchets)
Métaux					
Arsenic (As)	mg/kg Ms	12	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Arsenic (As) Cadmium (Cd) Chrome (Cr)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, EN 16174
	mg/kg Ms	43	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	12	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	0,06	0,05	+/- 20	Conforme à ISO 16772 et EN 16174
Cuivre (Cu) Mercure (Hg) Nickel (Ni) Plomb (Pb)	mg/kg Ms	44	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
	mg/kg Ms	10	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Zinc (Zn) Hydrocarbures Aromatique Naphtalène Acénaphtylène Acénaphtène Fluorène Phénanthrène Anthracène	mg/kg Ms	44	1	+/- 22	Conforme à EN-ISO 11885, EN 16174
Hydrocarbures Aromatique	es Polycycliques (IS	SO)			
Naphtalène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Fluorène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Phénanthrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Benzo(a)anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Chrysène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Donzo/h)fluoronthòno	and an Alama Man	<0,050	0,05		équivalent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	~0,000	0,00		
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Benzo(a)pyrène					équivalent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05		'

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361973

Spécification des échantillons BGP11 (1-2m)

•	•	•	1.5	La a a at	
= · *	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
□ Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Indéno(1,2,3-cd)pyrène HAP (6 Borneff) - somme Somme HAP (VROM)	mg/kg Ms	n.d.	•		équivalent à NF EN 16181
Somme HAP (VROM)	mg/kg Ms	n.d.			équivalent à NF EN 16181
	mg/kg Ms	n.d.			équivalent à NF EN 16181
HAP (EPA) - somme Composés aromatiques Benzène Toluène Ethylbenzène m,p-Xylène o-Xylène	<u> </u>				·
Benzène	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
∰ Toluène	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
Ethylbenzène	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	0,1		Conforme à ISO 22155
ତ୍ତ o-Xylène	mg/kg Ms	<0,050	0,05		Conforme à ISO 22155
Somme Xylènes	mg/kg Ms	n.d.			Conforme à ISO 22155
COHV Chlorure de Vinyle Dichlorométhane Trichlorométhane Trichlorométhane Trichloroéthylène Tétrachloroéthylène 1,1,1-Trichloroéthane 1,1,2-Trichloroéthane 1,2-Dichloroéthane					
្តិ Chlorure de Vinyle	mg/kg Ms	<0,02	0,02		Conforme à ISO 22155
Dichlorométhane	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
Trichlorométhane	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
Trichloroéthylène	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
% 1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
2 1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	0,1		Conforme à ISO 22155
. II,Z-Dicilioloctilarie	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
cis-1,2-Dichloroéthène 1,1-Dichloroéthylène Trans-1,2-Dichloroéthylène Somme cis/trans-1,2-Dichloroéthy	mg/kg Ms	<0,025	0,025		Conforme à ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,1		ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025		Conforme à ISO 22155
Somme cis/trans-1,2-Dichloroéthy	vlènes mg/kg Ms	n.d.			Conforme à ISO 22155
Hydrocarbures totaux (I Hydrocarbures totaux C10-C	SO)				
Mydrocarbures totaux C10-C		<20,0	20		ISO 16703
Fraction C10-C12	*) mg/kg Ms	<4,0	4		ISO 16703
Fraction C12-C16	*) mg/kg Ms	<4,0	4		ISO 16703
Fraction C16-C20	*) mg/kg Ms	2,6	2	+/- 21	ISO 16703
	*) mg/kg Ms	<2,0	2		ISO 16703
Fraction C24-C28	*) mg/kg Ms	<2,0	2		ISO 16703
Fraction C28-C32	*) mg/kg Ms	<2,0	2		ISO 16703
Fraction C24-C28 Fraction C28-C32 Fraction C32-C36 Fraction C36-C40	*) mg/kg Ms	<2,0	2		ISO 16703
Fraction C36-C40	*) mg/kg Ms	<2,0	2		ISO 16703

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé.
Le calcul de l' incertitude de mesure combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d' élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Début des analyses: 22.02.2021 Fin des analyses: 25.02.2021

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

dans ce

es activités rapportées

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110 e-Mail: info@al-west.nl, www.al-west.nl

Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361973

Spécification des échantillons

BGP11 (1-2m)

AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156 Chargée relation clientèle

sont identifiées par le symbole " *) ".

es activités rapportées dans ce document sont accréditées selon EN ISO/IEC 17025:2017. Seules les activités non accréditées

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Your labs. Your service.

BURGEAP (LYON 69) Monsieur Clément BERRY 143 Avenue de Verdun 92130 ISSY-LES-MOULINEAUX FRANCE

> Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361974

n° Cde 1016265 BC21-981 / CSSPCE210146 - ITM

N° échant. 361974 Solide / Eluat

 Date de validation
 19.02.2021

 Prélèvement
 19.02.2021 15:44

Prélèvement par: Client

Spécification des échantillons BGP14 (0-1m)

'			` '			
	Unit	é	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Lixiviation						
Fraction >4mm (EN12457-2)	% N	s	32,1	0,1		Selon norme lixiviation
Lixiviation (EN 12457-2)		۰	,	,		NF EN 12457-2
Masse brute Mh pour lixiviation	*) g	0	100	1		Selon norme lixiviation
Volume de lixiviant L ajouté pour l'extraction	n *) ml		900	1		Selon norme lixiviation
Prétraitement des échantille	ons					
Masse échantillon total inférieure à 2 kg	kg	0	0,65	0		
Prétraitement de l'échantillon		۰	-,			Conforme à NEN-EN 16179
Broyeur à mâchoires		0				méthode interne
Matière sèche	%	0	91,2	0,01	+/- 1	NEN-EN15934; EN12880
Calcul des Fractions soluble	es					
Antimoine cumulé (var. L/S)	*) mg/k	g Ms	0 - 0,05	0.05		Selon norme lixiviation
Arsenic cumulé (var. L/S)	*) mg/k	g Ms	0 - 0,05	0,05		Selon norme lixiviation
Baryum cumulé (var. L/S)	*) mg/k	g Ms	0 - 0,1	0,1		Selon norme lixiviation
Cadmium cumulé (var. L/S)	*) mg/k	g Ms	0 - 0,001	0,001		Selon norme lixiviation
Chlorures cumulé (var. L/S)	*) mg/k	g Ms	47	1		Selon norme lixiviation
Chrome cumulé (var. L/S)	*) mg/k	g Ms	0 - 0,02	0,02		Selon norme lixiviation
COT cumulé (var. L/S)	*) mg/k	g Ms	17	10		Selon norme lixiviation
Cuivre cumulé (var. L/S)	*) mg/k	g Ms	0 - 0,02	0,02		Selon norme lixiviation
Fluorures cumulé (var. L/S)	*) mg/k		11	1		Selon norme lixiviation
Fraction soluble cumulé (var. L/S)	*) mg/k	g Ms	0 - 1000	1000		Selon norme lixiviation
Indice phénol cumulé (var. L/S)		g Ms	0 - 0,1	0,1		Selon norme lixiviation
Mercure cumulé (var. L/S)	*) mg/k	-	0 - 0,0003	0,0003		Selon norme lixiviation
Molybdène cumulé (var. L/S)	*) mg/k	g Ms	0,08	0,05		Selon norme lixiviation
Nickel cumulé (var. L/S)	*) mg/k	_	0 - 0,05	0,05		Selon norme lixiviation
Plomb cumulé (var. L/S)	*) mg/k		0 - 0,05	0,05		Selon norme lixiviation
Sélénium cumulé (var. L/S)	*) mg/k	g Ms	0 - 0,05	0,05		Selon norme lixiviation
Sulfates cumulé (var. L/S)		g Ms	57	50		Selon norme lixiviation
Zinc cumulé (var. L/S)	*) mg/k	g Ms	0 - 0,02	0,02		Selon norme lixiviation
Analyses Physico-chimique	es.					
. pH-H2O		۰	9,3	0,1	+/- 10	Cf. NEN-ISO 10390 (sol

<1000

1000

Prétraitement pour analyses des métaux

COT Carbone Organique Total

uniquement)

conforme ISO 10694 (2008)

mg/kg Ms

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361974

Spécification des échantillons **BGP14 (0-1m)**

*.		Unité	Résultat	Quant.	Résultat %	Méthode
=	Minéralisation à l'eau régale		0			NF-EN 16174; NF EN 13657 (déchets)
/mb	Métaux	1	1		1	(400000)
le s	Arsenic (As)	mg/kg Ms	3,8	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
s par	Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, EN 16174
fiées	Chrome (Cr)	mg/kg Ms	29	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
dent	Cuivre (Cu)	mg/kg Ms	16	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
ont i	Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
ées s	Nickel (Ni)	mg/kg Ms	24	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
rédit	Plomb (Pb)	mg/kg Ms	11	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Seules les activités non accréditées sont identifiées par le symbole	Zinc (Zn)	mg/kg Ms	27	1	+/- 22	Conforme à EN-ISO 11885, EN 16174
nor	Hydrocarbures Aromatiques Po	lycyclique	es (ISO)			
ités	Naphtalène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
ξį	Acénaphtylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
ä	Acénaphtène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
<u>ĕ</u>	Fluorène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
les	Phénanthrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
, en	Anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
	Fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
917	Pyrène Pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
5:2	Benzo(a)anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
02	Chrysène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
17	Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
EC	Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
0	Benzo(a)pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
<u>S</u>	Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Ш		mg/kg Ms				équivalent à NF EN 16181
uc	Benzo(g,h,i)pérylène		<0,050	0,05		-
selc	Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Se	HAP (6 Borneff) - somme	mg/kg Ms	n.d.			équivalent à NF EN 16181
ité	Somme HAP (VROM)	mg/kg Ms	n.d.			équivalent à NF EN 16181
réd	HAP (EPA) - somme	mg/kg Ms	n.d.			équivalent à NF EN 16181
သွ	Composés aromatiques					
ıt (Benzène	mg/kg Ms	<0,050	0,05		Conforme à ISO 22155
SO	Toluène	mg/kg Ms	<0,050	0,05		Conforme à ISO 22155
ent	Ethylbenzène	mg/kg Ms	<0,050	0,05		Conforme à ISO 22155
Ĕ	m,p-Xylène	mg/kg Ms	<0,10	0,1		Conforme à ISO 22155
<u>5</u>	o-Xylène	mg/kg Ms	<0,050	0,05		Conforme à ISO 22155
e q	Somme Xylènes	mg/kg Ms	n.d.	-,		Conforme à ISO 22155
S	BTEX total	mg/kg Ms	n.d.			Conforme à ISO 22155
activités rapportées dans ce document sont accréditées selon EN ISO/IEC 17025:2017.	Hydrocarbures totaux (ISO)					,
ées	Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20		ISO 16703
orte		mg/kg Ms	<4,0	4		ISO 16703
ď		mg/kg Ms	<4,0	4		ISO 16703
ā		mg/kg Ms	<2,0	2		ISO 16703
ités		mg/kg Ms	<2,0	2		ISO 16703
χį		mg/kg Ms	<2,0	2		ISO 16703
ă	1 1404011 027 020	g/ng ivio	\Z, 0			100 10700

Limite

Incert.

RvA L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361974

Spécification des échantillons BGP14 (0-1m)

*.		Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
symbole " *)	Fraction C28-C32	*) mg/kg Ms	<2,0	2		ISO 16703
g	Fraction C32-C36	*) mg/kg Ms	2,7	2	+/- 21	ISO 16703
šyn	Fraction C36-C40	*) mg/kg Ms	2,9	2	+/- 21	ISO 16703
<u>e</u>	Polychlorobiphényles		•			
par	Somme 6 PCB	mg/kg Ms	n.d.			NEN-EN 16167
es	Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.			NEN-EN 16167
tifié	PCB (28)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
len	PCB (52)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
it io	PCB (101)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
sor	PCB (118)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
es	PCB (138)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
Jité	PCB (153)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
ïéc	PCB (180)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
acc	Analyses sur éluat après lixivi	iation				
lon	L/S cumulé	ml/g	10,0	0,1		Selon norme lixiviation
şs r	Conductivité électrique	μS/cm	87,6	5	+/- 10	Selon norme lixiviation
vite	pH		9,3	0	+/- 5	Selon norme lixiviation
acti	Température	°C	20,0	0		Selon norme lixiviation
les	Analyses Physico-chimiques	sur éluat	-			
es	Résidu à sec	mg/l	<100	100		Equivalent à NF EN ISO 15216
Seules les activités non accréditées sont identifiées par le	Fluorures (F)	mg/l	1,1	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
17.	Indice phénol	mg/l	<0,010	0,01		NEN-EN 16192
50	Chlorures (CI)	mg/l	4,7	0,1	+/- 10	Conforme à ISO 15923-1
)25	Sulfates (SO4)	mg/l	5,7	5	+/- 10	Conforme à ISO 15923-1
17025:2017.	COT	mg/l	1,7	11	+/- 10	conforme EN 16192
EC	Métaux sur éluat					
100	Antimoine (Sb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Z H	Arsenic (As)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
elon	Baryum (Ba)	µg/l	<10	10		Conforme à EN-ISO 17294-2 (2004)
ses s	Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
édité	Chrome (Cr)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
accr	Cuivre (Cu)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
ont	Mercure (Hg)	μg/l	<0,03	0,03		NEN-EN 1483 (2007)
nt Sí	Molybdène (Mo)	µg/l	8,0	5	+/- 10	Conforme à EN-ISO 17294-2
nmer	Nickel (Ni)	μg/l	<5,0	5		(2004) Conforme à EN-ISO 17294-2 (2004)
doc	Plomb (Pb)	μg/l	<5,0	5		(2004) Conforme à EN-ISO 17294-2 (2004)
ns ce	Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
ées dans ce document sont accréditées selon EN ISO/IEC	Zinc (Zn)	µg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé.
Le calcul de l' incertitude de mesure combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d' élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

es activités

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361974

Spécification des échantillons

BGP14 (0-1m)

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 22.02.2021 Fin des analyses: 26.02.2021

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

1. Hognenet

AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156 Chargée relation clientèle

sont identifiées par le symbole " *) ".

es activités rapportées dans ce document sont accréditées selon EN ISO/IEC 17025:2017. Seules les activités non accréditées

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

BURGEAP (LYON 69) Monsieur Clément BERRY 143 Avenue de Verdun 92130 ISSY-LES-MOULINEAUX **FRANCE**

> Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361975

n° Cde 1016265 BC21-981 / CSSPCE210146 - ITM

N° échant. 361975 Solide / Eluat

Date de validation 19.02.2021 Prélèvement 19.02.2021 15:44

Prélèvement par: Client

Spécification des échantillons **BGP15 (0-1m)**

opecinication des centantinons			13 (0-1111)			
		Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Lixiviation						
Fraction >4mm (EN12457-2)		% Ms	<0,1	0,1		Selon norme lixiviation
Lixiviation (EN 12457-2)			0	,		NF EN 12457-2
Masse brute Mh pour lixiviation	*)	g	° 120	1		Selon norme lixiviation
Volume de lixiviant L ajouté pour l'extraction		ml	900	1		Selon norme lixiviation
Prétraitement des échantille	ons					
Masse échantillon total inférieure à 2 kg		kg	° 0,66	0		
Prétraitement de l'échantillon			0			Conforme à NEN-EN 16179
Matière sèche		%	° 80,1	0,01	+/- 1	NEN-EN15934; EN12880
Calcul des Fractions solubl	es					
Antimoine cumulé (var. L/S)	*)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Arsenic cumulé (var. L/S)	*)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Baryum cumulé (var. L/S)	*)	mg/kg Ms	0,21	0,1		Selon norme lixiviation
Cadmium cumulé (var. L/S)	*)	mg/kg Ms	0 - 0,001	0,001		Selon norme lixiviation
Chlorures cumulé (var. L/S)	*)	mg/kg Ms	40	1		Selon norme lixiviation
Chrome cumulé (var. L/S)	*)	mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation
COT cumulé (var. L/S)	*)	mg/kg Ms	27	10		Selon norme lixiviation
Cuivre cumulé (var. L/S)	*)	mg/kg Ms	0,03	0,02		Selon norme lixiviation
Fluorures cumulé (var. L/S)	*)	mg/kg Ms	1,0	1		Selon norme lixiviation
Fraction soluble cumulé (var. L/S)	*)	mg/kg Ms	0 - 1000	1000		Selon norme lixiviation
Indice phénol cumulé (var. L/S)	*)	mg/kg Ms	0 - 0,1	0,1		Selon norme lixiviation
Mercure cumulé (var. L/S)	*)	mg/kg Ms	0 - 0,0003	0,0003		Selon norme lixiviation
Molybdène cumulé (var. L/S)	*)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Nickel cumulé (var. L/S)		mg/kg Ms	0,06	0,05		Selon norme lixiviation
Plomb cumulé (var. L/S)	*)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Sélénium cumulé (var. L/S)	*)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Sulfates cumulé (var. L/S)	_	mg/kg Ms	53			Selon norme lixiviation
Zinc cumulé (var. L/S)	*)	mg/kg Ms	0,02	0,02		Selon norme lixiviation
Analyses Physico-chimique	es					
pH-H2O			° 5,6	0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)

3	pH-H2O		° 5.6	0.1	+/- 10	Cf. NEN-ISO 10390 (sol
5			,	- /		uniquement)
2	COT Carbone Organique Total	mg/kg Ms	1000	1000	+/- 16	conforme ISO 10694 (2008)

Prétraitement pour analyses des métaux

Minéralisation à l'eau régale NF-EN 16174; NF EN 13657 (déchets)

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361975

Spécification des échantillons **BGP15 (0-1m)**

opeomodion des conditions			Limite	Incert.	
	Unité	Résultat	Quant.	Résultat %	Méthode
Métaux					
Arsenic (As)	mg/kg Ms	6,4	1	+/- 15	Conforme à EN-ISO 11885, El
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		16174 Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	51	0,2	+/- 12	Conforme à EN-ISO 11885, EN
Cuivre (Cu)	mg/kg Ms	14	0,2	+/- 20	Conforme à EN-ISO 11885, El 16174
Mercure (Hg)	mg/kg Ms	0,08	0,05	+/- 20	Conforme à ISO 16772 et EN 16174
Nickel (Ni)	mg/kg Ms	26	0,5	+/- 11	Conforme à EN-ISO 11885, El 16174
Plomb (Pb)	mg/kg Ms	13	0,5	+/- 11	Conforme à EN-ISO 11885, El 16174
Zinc (Zn)	mg/kg Ms	47	1	+/- 22	Conforme à EN-ISO 11885, El 16174
Hydrocarbures Aromatique	s Polycycliques (I	ISO)			
Naphtalène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Fluorène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Phénanthrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Benzo(a)anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Chrysène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
HAP (6 Borneff) - somme	mg/kg Ms	n.d.	-,,,,,		équivalent à NF EN 16181
Somme HAP (VROM)	mg/kg Ms	n.d.			équivalent à NF EN 16181
HAP (EPA) - somme	mg/kg Ms	n.d.			équivalent à NF EN 16181
Composés aromatiques	<u> </u>				·
Benzène	mg/kg Ms	<0,050	0,05		Conforme à ISO 22155
Toluène	mg/kg Ms	<0,050	0,05		Conforme à ISO 22155
Ethylbenzène	mg/kg Ms	<0,050	0,05		Conforme à ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	0,1		Conforme à ISO 22155
o-Xylène	mg/kg Ms	<0,050	0,05		Conforme à ISO 22155
Somme Xylènes	mg/kg Ms	n.d.	•		Conforme à ISO 22155
BTEX total	*) mg/kg Ms	n.d.			Conforme à ISO 22155
Hydrocarbures totaux (ISO)					
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20		ISO 16703
Fraction C10-C12	*) mg/kg Ms	<4,0	4		ISO 16703
Fraction C12-C16	*) mg/kg Ms	<4,0	4		ISO 16703
Fraction C16-C20	*) mg/kg Ms	<2,0	2		ISO 16703
Fraction C20-C24	*) mg/kg Ms	2,5	2	+/- 21	ISO 16703
Fraction C24-C28	*) mg/kg Ms	<2,0	2		ISO 16703
Fraction C28-C32	*) mg/kg Ms	<2,0	2		ISO 16703
Fraction C32-C36	*) mg/kg Ms	2,6	2	+/- 21	ISO 16703

Kamer van Koophandel Nr. 08110898 Directeur ppa. Marc van Gelder VAT/BTW-ID-Nr.: NL 811132559 B01 Dr. Paul Wimmer

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361975

Spécification des échantillons BGP15 (0-1m)

	Specification des echantilloris	DGI	P 15 (0-1111)			
* .		Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
<u>e</u>	Fraction C36-C40	*) mg/kg Ms	2,7	2	+/- 21	ISO 16703
npc	Polychlorobiphényles					
syr	Somme 6 PCB	mg/kg Ms	n.d.			NEN-EN 16167
<u>e</u>	Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.			NEN-EN 16167
pa	PCB (28)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
ées	PCB (52)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
tifié	PCB (101)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
den	PCB (118)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
n i	PCB (138)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
SO	PCB (153)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
ées	PCB (180)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
dit	Analyses sur éluat après lixiv	iation				
Scré,	L/S cumulé	ml/g	10,0	0,1		Selon norme lixiviation
ă	Conductivité électrique	μS/cm	100	5	+/- 10	Selon norme lixiviation
nor	рН		6,2	0	+/- 5	Selon norme lixiviation
tés	Température	°C	19,5	0		Selon norme lixiviation
Ξį	Analyses Physico-chimiques	sur éluat				
s ac	Résidu à sec	mg/l	<100	100		Equivalent à NF EN ISO 15216
Seules les activités non accréditées sont identifiées par le symbole	Fluorures (F)	mg/l	0,1	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
Ine	Indice phénol	mg/l	<0,010	0,01		NEN-EN 16192
	Chlorures (CI)	mg/l	4,0	0,1	+/- 10	Conforme à ISO 15923-1
717	Sulfates (SO4)	mg/l	5,3	5	+/- 10	Conforme à ISO 15923-1
5:2(COT	mg/l	2,7	1	+/- 10	conforme EN 16192
02	Métaux sur éluat					
ce document sont accréditées selon EN ISO/IEC 17025:2017.	Antimoine (Sb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
30/IE	Arsenic (As)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
N N	Baryum (Ba)	μg/l	21	10	+/- 10	Conforme à EN-ISO 17294-2 (2004)
lon F	Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
es se	Chrome (Cr)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
dité	Cuivre (Cu)	μg/l	2,5	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)
ХСГÉ	Mercure (Hg)	μg/l	<0,03	0,03		NEN-EN 1483 (2007)
nt ac	Molybdène (Mo)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
nt so	Nickel (Ni)	μg/l	6,4	5	+/- 11	Conforme à EN-ISO 17294-2 (2004)
nme	Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
goc	Sélénium (Se)	µg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
s ce	Zinc (Zn)	μg/l	2,4	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé.
Le calcul de l' incertitude de mesure combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d' élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

13-13/31/080-FR-P/V

es activités

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361975

BGP15 (0-1m) Spécification des échantillons

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 22.02.2021 Fin des analysés: 02.03.2021

Chargée relation clientèle

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156

sont identifiées par le symbole " *) ".

es activités rapportées dans ce document sont accréditées selon EN ISO/IEC 17025:2017. Seules les activités non accréditées

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Your labs. Your service.

BURGEAP (LYON 69) Monsieur Clément BERRY 143 Avenue de Verdun 92130 ISSY-LES-MOULINEAUX FRANCE

> Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361976

n° Cde 1016265 BC21-981 / CSSPCE210146 - ITM

N° échant. 361976 Solide / Eluat

 Date de validation
 19.02.2021

 Prélèvement
 19.02.2021 15:44

Prélèvement par: Client

Spécification des échantillons BGP16 (0-1m)

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Lixiviation					
Fraction >4mm (EN12457-2)	% Ms	28,4	0,1		Selon norme lixiviation
Lixiviation (EN 12457-2)		0			NF EN 12457-2
Masse brute Mh pour lixiviation	*) g	° 96	1		Selon norme lixiviation
Volume de lixiviant L ajouté pour l'extraction	*) ml	900	1		Selon norme lixiviation
Prétraitement des échantillon	ns				
Masse échantillon total inférieure à 2 kg	kg	° 0,62	0		
Prétraitement de l'échantillon		0			Conforme à NEN-EN 16179
Broyeur à mâchoires		0			méthode interne
Matière sèche	%	° 93,8	0,01	+/- 1	NEN-EN15934; EN12880
Calcul des Fractions solubles	S				
Antimoine cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Arsenic cumulé (var. L/S)	*) mg/kg Ms	0,09	0,05		Selon norme lixiviation
Baryum cumulé (var. L/S)	*) mg/kg Ms	0 - 0,1	0,1		Selon norme lixiviation
Cadmium cumulé (var. L/S)	*) mg/kg Ms	0 - 0,001	0,001		Selon norme lixiviation
Chlorures cumulé (var. L/S)	*) mg/kg Ms	91	1		Selon norme lixiviation
Chrome cumulé (var. L/S)	*) mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation
COT cumulé (var. L/S)	*) mg/kg Ms	0 - 10	10		Selon norme lixiviation
Cuivre cumulé (var. L/S)	*) mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation
Fluorures cumulé (var. L/S)	*) mg/kg Ms	2,0	1		Selon norme lixiviation
Fraction soluble cumulé (var. L/S)	*) mg/kg Ms	0 - 1000	1000		Selon norme lixiviation
Indice phénol cumulé (var. L/S)	*) mg/kg Ms	0 - 0,1	0,1		Selon norme lixiviation
Mercure cumulé (var. L/S)	*) mg/kg Ms	0 - 0,0003	0,0003		Selon norme lixiviation
Molybdène cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Nickel cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Plomb cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Sélénium cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Sulfates cumulé (var. L/S)	*) mg/kg Ms	54	50		Selon norme lixiviation
Zinc cumulé (var. L/S)	*) mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation
Analyses Physico-chimiques					
pH-H2O		° 9,6	0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)

<1000

1000

Prétraitement pour analyses des métaux

COT Carbone Organique Total

conforme ISO 10694 (2008)

mg/kg Ms

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361976

Spécification des échantillons **BGP16 (0-1m)**

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Minéralisation à l'eau régale	0				NF-EN 16174; NF EN 13657 (déchets)
Métaux					
Arsenic (As)	mg/kg Ms	9,8	1	+/- 15	Conforme à EN-ISO 11885, E 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, E
Chrome (Cr)	mg/kg Ms	16	0,2	+/- 12	Conforme à EN-ISO 11885, E 16174
Cuivre (Cu)	mg/kg Ms	6,1	0,2	+/- 20	Conforme à EN-ISO 11885, E 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et Et 16174
Nickel (Ni)	mg/kg Ms	12	0,5	+/- 11	Conforme à EN-ISO 11885, E 16174
Plomb (Pb)	mg/kg Ms	9,1	0,5	+/- 11	Conforme à EN-ISO 11885, E 16174
Zinc (Zn)	mg/kg Ms	20	1	+/- 22	Conforme à EN-ISO 11885, E 16174
Hydrocarbures Aromatique	s Polycycliques (IS	SO)			
Naphtalène	mg/kg Ms	<0,050	0,05		éguivalent à NF EN 1618
Acénaphtylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Acénaphtène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Fluorène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Phénanthrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Benzo(a)anthracène					
Chrysène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618 équivalent à NF EN 1618
Benzo(a)pyrène	mg/kg Ms	<0,050	0,05		
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618
HAP (6 Borneff) - somme	mg/kg Ms	n.d.			équivalent à NF EN 1618
Somme HAP (VROM)	mg/kg Ms	n.d.			équivalent à NF EN 1618
HAP (EPA) - somme	mg/kg Ms	n.d.			équivalent à NF EN 1618
Composés aromatiques					
Benzène	mg/kg Ms	<0,050	0,05		Conforme à ISO 2215
Toluène	mg/kg Ms	<0,050	0,05		Conforme à ISO 2215
Ethylbenzène	mg/kg Ms	<0,050	0,05		Conforme à ISO 2215
m,p-Xylène	mg/kg Ms	<0,10	0,1		Conforme à ISO 2215
o-Xylène	mg/kg Ms	<0,050	0,05		Conforme à ISO 2215
Somme Xylènes	mg/kg Ms	n.d.	0,00		Conforme à ISO 2215
BTEX total	*) mg/kg Ms	n.d.			Conforme à ISO 2215
Hydrocarbures totaux (ISO)		11141			Comonno a 100 EE 10
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20		ISO 16703
Fraction C10-C12	*) mg/kg Ms	<4,0	4		ISO 16703
Fraction C12-C16	*) mg/kg Ms	<4,0	4		ISO 16703
Fraction C16-C20	*) mg/kg Ms	<2,0	2		ISO 16703
Fraction C20-C24	*) mg/kg Ms	<2,0	2		ISO 16703
Fraction C24-C28	*) mg/kg Ms	<2,0	2		ISO 16703

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361976

Spécification des échantillons **BGP16 (0-1m)**

*.		Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode		
symbole " *)		mg/kg Ms	<2,0	2		ISO 16703		
g	Fraction C32-C36	mg/kg Ms	<2,0	2		ISO 16703		
syn	Fraction C36-C40	mg/kg Ms	<2,0	2		ISO 16703		
<u>e</u>	Polychlorobiphényles							
par	Somme 6 PCB	mg/kg Ms	n.d.			NEN-EN 16167		
es	Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.			NEN-EN 16167		
tifié	PCB (28)	mg/kg Ms	<0,001	0,001		NEN-EN 16167		
Jen	PCB (52)	mg/kg Ms	<0,001	0,001		NEN-EN 16167		
it ic	PCB (101)	mg/kg Ms	<0,001	0,001		NEN-EN 16167		
sor	PCB (118)	mg/kg Ms	<0,001	0,001		NEN-EN 16167		
es	PCB (138)	mg/kg Ms	<0,001	0,001		NEN-EN 16167		
dité	PCB (153)	mg/kg Ms	<0,001	0,001		NEN-EN 16167		
ïéc	PCB (180)	mg/kg Ms	<0,001	0,001		NEN-EN 16167		
activités non accréditées sont identifiées par le	Analyses sur éluat après lixivia	ation						
nou	L/S cumulé	ml/g	10.0	0,1		Selon norme lixiviation		
S	Conductivité électrique	μS/cm	110	5	+/- 10	Selon norme lixiviation		
vité	рН		10,0	0	+/- 5	Selon norme lixiviation		
acti	Température	°C	19,6	0		Selon norme lixiviation		
es	Analyses Physico-chimiques s	ur éluat	,					
es	Résidu à sec	mg/l	<100	100		Equivalent à NF EN ISO 15216		
Seules les	Fluorures (F)	mg/l	0,2	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192		
17.	Indice phénol	mg/l	<0,010	0,01		NEN-EN 16192		
:20	Chlorures (CI)	mg/l	9,1	0,1	+/- 10	Conforme à ISO 15923-1		
)25	Sulfates (SO4)	mg/l	5,4	5	+/- 10	Conforme à ISO 15923-1		
17025:2017.	COT	mg/l	<1,0	1		conforme EN 16192		
EC	Métaux sur éluat							
/OSI	Antimoine (Sb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)		
Ш Ц	Arsenic (As)	μg/l	9,4	5	+/- 10	Conforme à EN-ISO 17294-2 (2004)		
elon	Baryum (Ba)	μg/l	<10	10		Conforme à EN-ISO 17294-2 (2004)		
ses s	Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)		
édité	Chrome (Cr)	µg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)		
accr	Cuivre (Cu)	µg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)		
ont	Mercure (Hg)	µg/l	<0,03	0,03		NEN-EN 1483 (2007)		
ent so	Molybdène (Mo)	µg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)		
s dans ce document sont accréditées selon EN ISO/IEC	Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)		
op e	Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)		
ns c	Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)		
s da	Zinc (Zn)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)		

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. Le calcul de l' incertitude de mesure combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d'élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

es activités

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361976

Spécification des échantillons BGP16 (0-1m)

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 22.02.2021 Fin des analyses: 26.02.2021

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

1. Hognenet

AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156 Chargée relation clientèle

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Your labs. Your service.

BURGEAP (LYON 69) Monsieur Clément BERRY 143 Avenue de Verdun 92130 ISSY-LES-MOULINEAUX **FRANCE**

> Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361977

sont identifiées par le symbole " *) ". n° Cde 1016265 BC21-981 / CSSPCE210146 - ITM

N° échant. 361977 Solide / Eluat

Date de validation 19.02.2021 Prélèvement 19.02.2021 15:44

Prétraitement des échantillons							
Prétraitement de l'échantillon		•				Conforme à NEN-EN 16179	
Broyeur à mâchoires		•				méthode interne	
Matière sèche	%	0	89,1	0,01	+/- 1	NEN-EN15934; EN12880	
Prétraitement pour analyses des métaux							

- · · · · · · · · · · ·	<u> </u>	_			NE EN 10121 NE EN 10052
Minéralisation à l'eau régale		0			NF-EN 16174; NF EN 13657
					(déchets)
Métaux					
Arsenic (As)	mg/kg Ms	23	1	+/- 15	Conforme à EN-ISO 11885, EN
. ,					16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, EN
()		,	- ,		16174
Chrome (Cr)	mg/kg Ms	46	0,2	+/- 12	Conforme à EN-ISO 11885, EN
ooo (o.)			٠,_	.,	16174
Cuivre (Cu)	mg/kg Ms	23	0,2	+/- 20	Conforme à EN-ISO 11885, EN
Currio (Cu)	gg		0,=	., 20	16174
Mercure (Hg)	mg/kg Ms	0,05	0,05	+/- 20	Conforme à ISO 16772 et EN
Wichoute (Fig)	g,gc	0,00	0,00	17 20	16174
Nickel (Ni)	mg/kg Ms	38	0,5	+/- 11	Conforme à EN-ISO 11885, EN
Triolog (Tri)	g,gc	33	0,0	'' ''	16174
Plomb (Pb)	mg/kg Ms	16	0,5	+/- 11	Conforme à EN-ISO 11885, EN
i ioiiio (i o)	ing/kg Wis	10	0,5	T/- II	16174
Zinc (Zn)	mg/kg Ms	37	1	+/- 22	Conforme à EN-ISO 11885, EN
ZIIIC (ZII)	mg/kg Wis	31	1	T/- ZZ	16174

Prélèvement par:	Clie	ent					
Spécification des échantillons	BG	P16 (2-3m)					
	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode		
Prétraitement des échantillon	O () NEW EN 404						
Prétraitement de l'échantillon		0			Conforme à NEN-EN 161		
Broyeur à mâchoires	01		0.04		méthode interne		
Matière sèche	%	° 89,1	0,01	+/- 1	NEN-EN15934; EN128		
Prétraitement pour analyses	des métaux						
Minéralisation à l'eau régale		0			NF-EN 16174; NF EN 1365 (déchets)		
Métaux							
Arsenic (As)	mg/kg Ms	23	1	+/- 15	Conforme à EN-ISO 11885, E 16174		
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, 16174		
Chrome (Cr)	mg/kg Ms	46	0,2	+/- 12	Conforme à EN-ISO 11885, 16174		
Cuivre (Cu)	mg/kg Ms	23	0,2	+/- 20	Conforme à EN-ISO 11885, 16174		
Mercure (Hg)	mg/kg Ms	0,05	0,05	+/- 20	Conforme à ISO 16772 et E 16174		
Nickel (Ni)	mg/kg Ms	38	0,5	+/- 11	Conforme à EN-ISO 11885, 16174		
Plomb (Pb)	mg/kg Ms	16	0,5	+/- 11	Conforme à EN-ISO 11885, 16174		
Zinc (Zn)	mg/kg Ms	37	1	+/- 22	Conforme à EN-ISO 11885, 16174		
Hydrocarbures Aromatiques Polycycliques (ISO)							
Naphtalène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618		
Acénaphtylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618		
Acénaphtène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618		
Fluorène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618		
Phénanthrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618		
Anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618		
Fluoranthène	mg/kg Ms	0,062	0,05	+/- 17	équivalent à NF EN 1618		
Pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618		
Benzo(a)anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618		
Chrysène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618		
Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618		
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618		
Benzo(a)pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618		
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 1618		

page 1 de 2

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361977

Spécification des échantillons BGP16 (2-3m)

				Limite	Incert.					
*		Unité	Résultat	Quant.	Résultat %	Méthode				
<u>o</u>	Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181				
symbole	Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181				
syn	HAP (6 Borneff) - somme	mg/kg Ms	0,0620 x)			équivalent à NF EN 16181				
par le s	Somme HAP (VROM)	mg/kg Ms	0,0620 x)			équivalent à NF EN 16181				
	HAP (EPA) - somme	mg/kg Ms	0,0620 x)			équivalent à NF EN 16181				
_	Composés aromatiques									
sont identifiées	Benzène	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155				
gen	Toluène	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155				
Ę.	Ethylbenzène	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155				
son	m,p-Xylène	mg/kg Ms	<0,10	0,1		Conforme à ISO 22155				
es	o-Xylène	mg/kg Ms	<0,050	0,05		Conforme à ISO 22155				
dité	Somme Xylènes	mg/kg Ms	n.d.			Conforme à ISO 22155				
accréditées	Hydrocarbures totaux (ISO)									
	Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20		ISO 16703				
non	Fraction C10-C12	mg/kg Ms	<4,0	4		ISO 16703				
és	Fraction C12-C16	mg/kg Ms	<4,0	4		ISO 16703				
activités	Fraction C16-C20	mg/kg Ms	<2,0	2		ISO 16703				
act	Fraction C20-C24	mg/kg Ms	<2,0	2		ISO 16703				
les	Fraction C24-C28	mg/kg Ms	<2,0	2		ISO 16703				
es	Fraction C28-C32	mg/kg Ms	<2,0	2		ISO 16703				
eules	Fraction C32-C36	mg/kg Ms	2,6	2	+/- 21	ISO 16703				
S.	Fraction C36-C40	mg/kg Ms	2,9	2	+/- 21	ISO 16703				

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé.
Le calcul de l' incertitude de mesure combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d' élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Début des analyses: 22.02.2021 Fin des analyses: 25.02.2021

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156 Chargée relation clientèle

ISO/IEC 17025:2017

Z H

Les activités rapportées dans ce document sont accréditées selon

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Your labs. Your service.

BURGEAP (LYON 69) Monsieur Clément BERRY 143 Avenue de Verdun 92130 ISSY-LES-MOULINEAUX **FRANCE**

> Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361978

sont identifiées par le symbole " *) ". n° Cde 1016265 BC21-981 / CSSPCE210146 - ITM

N° échant. 361978 Solide / Eluat

Date de validation 19.02.2021 Prélèvement 19.02.2021 15:44

Prélèvement par: Client

Spécification des échantillons **BGP17 (0-1m)**

•	Unité	, , Résultat	Limite Quant.	Incert. Résultat %	Méthode
Liviviation					
Lixiviation Fraction >4mm (EN12457-2)	% Ms	15,6	0.1		Selon norme lixiviation
Lixiviation (EN 12457-2)	70 IVIS	10,0	0,1		NF EN 12457-2
Masse brute Mh pour lixiviation	*) a	° 110	1		Selon norme lixiviation
Volume de lixiviant L ajouté pour l'extraction	*) g *) ml	900	1		Selon norme lixiviation
, .		900	ı		Selon norme ilxiviation
Prétraitement des échantillor		I .			
Masse échantillon total inférieure à 2 kg	kg	° 0,58	0		
Prétraitement de l'échantillon		0			Conforme à NEN-EN 16179
Broyeur à mâchoires		0			méthode interne
Matière sèche	%	° 85,9	0,01	+/- 1	NEN-EN15934; EN12880
Calcul des Fractions solubles	S				
Antimoine cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Arsenic cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Baryum cumulé (var. L/S)	*) mg/kg Ms	0,24	0,1		Selon norme lixiviation
Cadmium cumulé (var. L/S)	*) mg/kg Ms	0 - 0,001	0,001		Selon norme lixiviation
Chlorures cumulé (var. L/S)	*) mg/kg Ms	47	1		Selon norme lixiviation
Chrome cumulé (var. L/S)	*) mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation
COT cumulé (var. L/S)	*) mg/kg Ms	27	10		Selon norme lixiviation
Cuivre cumulé (var. L/S)	*) mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation
Fluorures cumulé (var. L/S)	*) mg/kg Ms	6,0	1		Selon norme lixiviation
Fraction soluble cumulé (var. L/S)	*) mg/kg Ms	1300	1000		Selon norme lixiviation
Indice phénol cumulé (var. L/S)	*) mg/kg Ms	0 - 0,1	0,1		Selon norme lixiviation
Mercure cumulé (var. L/S)	*) mg/kg Ms	0 - 0,0003	0,0003		Selon norme lixiviation
Molybdène cumulé (var. L/S)	*) mg/kg Ms	0,06	0,05		Selon norme lixiviation
Nickel cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Plomb cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Sélénium cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Sulfates cumulé (var. L/S)	*) mg/kg Ms	340	50		Selon norme lixiviation
Zinc cumulé (var. L/S)	*) mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation
Analyses Physico-chimiques			•		
pH-H2O	,	° 8,1	0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)

<1000

1000

Prétraitement pour analyses des métaux

COT Carbone Organique Total

conforme ISO 10694 (2008)

es activités rapportées dans ce document sont accréditées selon EN ISO/IEC 17025:2017. Seules les activités non accréditées

mg/kg Ms

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361978

Spécification des échantillons **BGP17 (0-1m)**

* .		Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
ole "	Minéralisation à l'eau régale		٥			NF-EN 16174; NF EN 13657 (déchets)
'n,	Métaux					
Seules les activités non accréditées sont identifiées par le symbole	Arsenic (As)	mg/kg Ms	9,0	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
s par	Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, EN 16174
ıtifiée	Chrome (Cr)	mg/kg Ms	35	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
ider	Cuivre (Cu)	mg/kg Ms	14	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
sont	Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
itées	Nickel (Ni)	mg/kg Ms	21	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
créd	Plomb (Pb)	mg/kg Ms	10	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
on ac	Zinc (Zn)	mg/kg Ms	26	1	+/- 22	Conforme à EN-ISO 11885, EN 16174
snc	Hydrocarbures Aromatiques Po	olycyclique	es (ISO)			
/ité	Naphtalène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
ĕ	Acénaphtylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
s S	Acénaphtène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
<u>e</u>	Fluorène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
<u>le</u>	Phénanthrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Se	Anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
	Fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
201	Pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
25:	Benzo(a)anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
17025:2017.	Chrysène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
$\frac{1}{2}$	Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Ĭ.	Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
80	Benzo(a)pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
z	Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
ӹ	Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
<u>S</u>	Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Se	HAP (6 Borneff) - somme	mg/kg Ms	n.d.	,		équivalent à NF EN 16181
ées	Somme HAP (VROM)	mg/kg Ms	n.d.			équivalent à NF EN 16181
ä	HAP (EPA) - somme	mg/kg Ms	n.d.			équivalent à NF EN 16181
nt sont accréditées selon EN ISO/IEC	Composés aromatiques	<u> </u>			1	1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
ıt a	Benzène	mg/kg Ms	<0,050	0,05		Conforme à ISO 22155
sor	Toluène	mg/kg Ms	<0,050	0,05		Conforme à ISO 22155
	Ethylbenzène	mg/kg Ms	<0,050	0,05		Conforme à ISO 22155
me	m,p-Xylène	mg/kg Ms	<0,10	0,03		Conforme à ISO 22155
20	o-Xylène	mg/kg Ms	<0,050	0,05		Conforme à ISO 22155
ŏ	Somme Xylènes	mg/kg Ms	n.d.	0,00		Conforme à ISO 22155
ပိ		mg/kg Ms	n.d.			Conforme à ISO 22155
activités rapportées dans ce docume	Hydrocarbures totaux (ISO)	ing/ng me	II.u.			0011011110 d 100 22 100
es	Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20		ISO 16703
orté	Fraction C10-C12	mg/kg Ms	<4,0	4		ISO 16703
oda		mg/kg Ms	<4,0	4		ISO 16703
g	Fraction C16-C20	mg/kg Ms	<2,0	2		ISO 16703
ités		mg/kg Ms	<2,0	2		ISO 16703
Ϋ́		mg/kg Ms	<2,0	2		ISO 16703
ä	1 1404011 027-020	mg/ng ivis	\2,0		1	100 10703

page 2 de 4 **RvA** L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361978

Spécification des échantillons **BGP17 (0-1m)**

*.		Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
symbole " *)	Fraction C28-C32	mg/kg Ms	<2,0	2		ISO 16703
g		mg/kg Ms	<2,0	2		ISO 16703
syn	Fraction C36-C40	mg/kg Ms	<2,0	2		ISO 16703
<u>e</u>	Polychlorobiphényles					
par	Somme 6 PCB	mg/kg Ms	n.d.			NEN-EN 16167
es	Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.			NEN-EN 16167
tifié	PCB (28)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
len	PCB (52)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
it ic	PCB (101)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
Sor	PCB (118)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
es	PCB (138)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
dité	PCB (153)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
cré	PCB (180)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
ä	Analyses sur éluat après lixivi	ation				
Jon	L/S cumulé	ml/g	10,0	0,1		Selon norme lixiviation
és r	Conductivité électrique	μS/cm	250	5	+/- 10	Selon norme lixiviation
<u>Xite</u>	pH	•	8,2	0	+/- 5	Selon norme lixiviation
act	Température	°C	19,6	0		Selon norme lixiviation
les	Analyses Physico-chimiques	sur éluat				
les	Résidu à sec	mg/l	130	100	+/- 22	Equivalent à NF EN ISO 15216
Seules les activités non accréditées sont identifiées par le	Fluorures (F)	mg/l	0,6	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
17025:2017.	Indice phénol	mg/l	<0,010	0,01		NEN-EN 16192
55	Chlorures (CI)	mg/l	4,7	0,1	+/- 10	Conforme à ISO 15923-1
325	Sulfates (SO4)	mg/l	34	5	+/- 10	Conforme à ISO 15923-1
17	COT	mg/l	2,7	11	+/- 10	conforme EN 16192
EC	Métaux sur éluat					
180/1	Antimoine (Sb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Z N	Arsenic (As)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
elon	Baryum (Ba)	μg/l	24	10	+/- 10	Conforme à EN-ISO 17294-2 (2004)
es s	Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
rédite	Chrome (Cr)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
accı	Cuivre (Cu)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
ont	Mercure (Hg)	μg/l	<0,03	0,03		NEN-EN 1483 (2007)
nt s	Molybdène (Mo)	µg/l	6,3	5	+/- 10	Conforme à EN-ISO 17294-2 (2004)
nme	Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
op e	Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
INS CO	Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
ées dans ce document sont accréditées selon EN ISO/IEC	Zinc (Zn)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. Le calcul de l' incertitude de mesure combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d'élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

es activités

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361978

Spécification des échantillons

BGP17 (0-1m)

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 22.02.2021 Fin des analyses: 26.02.2021

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156 Chargée relation clientèle

Lognenet

sont identifiées par le symbole " *) ".

es activités rapportées dans ce document sont accréditées selon EN ISO/IEC 17025:2017. Seules les activités non accréditées

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

BURGEAP (LYON 69) Monsieur Clément BERRY 143 Avenue de Verdun 92130 ISSY-LES-MOULINEAUX FRANCE

> Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361979

n° Cde 1016265 BC21-981 / CSSPCE210146 - ITM

N° échant. 361979 Solide / Eluat

 Date de validation
 19.02.2021

 Prélèvement
 19.02.2021 15:44

Prélèvement par: Client

Spécification des échantillons BGP18 (0-1m)

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Lixiviation					
Fraction >4mm (EN12457-2)	% Ms	64,3	0,1		Selon norme lixiviation
Lixiviation (EN 12457-2)		0	- ,		NF EN 12457-2
Masse brute Mh pour lixiviation	*) g	° 100	1		Selon norme lixiviation
Volume de lixiviant L ajouté pour l'extraction	*) ml	900	1		Selon norme lixiviation
Prétraitement des échantillon	s				
Masse échantillon total inférieure à 2 kg	kg	° 0.69	0		
Prétraitement de l'échantillon		0			Conforme à NEN-EN 16179
Broyeur à mâchoires		0			méthode interne
Matière sèche	%	° 89,6	0,01	+/- 1	NEN-EN15934; EN12880
Calcul des Fractions solubles	,				
Antimoine cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Arsenic cumulé (var. L/S)	*) mg/kg Ms	0,06	0,05		Selon norme lixiviation
Baryum cumulé (var. L/S)	*) mg/kg Ms	0 - 0,1	0,1		Selon norme lixiviation
Cadmium cumulé (var. L/S)	*) mg/kg Ms	0 - 0,001	0,001		Selon norme lixiviation
Chlorures cumulé (var. L/S)	*) mg/kg Ms	50	1		Selon norme lixiviation
Chrome cumulé (var. L/S)	*) mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation
COT cumulé (var. L/S)	*) mg/kg Ms	180	10		Selon norme lixiviation
Cuivre cumulé (var. L/S)	*) mg/kg Ms	0,21	0,02		Selon norme lixiviation
Fluorures cumulé (var. L/S)	*) mg/kg Ms	3,0	1		Selon norme lixiviation
Fraction soluble cumulé (var. L/S)	*) mg/kg Ms	1100	1000		Selon norme lixiviation
Indice phénol cumulé (var. L/S)	*) mg/kg Ms	0 - 0,1	0,1		Selon norme lixiviation
Mercure cumulé (var. L/S)	*) mg/kg Ms	0 - 0,0003	0,0003		Selon norme lixiviation
Molybdène cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Nickel cumulé (var. L/S)	*) mg/kg Ms	0,05	0,05		Selon norme lixiviation
Plomb cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Sélénium cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Sulfates cumulé (var. L/S)	*) mg/kg Ms	190	50		Selon norme lixiviation
Zinc cumulé (var. L/S)	*) mg/kg Ms	0,03	0,02		Selon norme lixiviation
Analyses Physico-chimiques					
pH-H2O		° 8,5	0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)

9300

1000

+/- 16

Prétraitement pour analyses des métaux

conforme ISO 10694 (2008)

COT Carbone Organique Total

mg/kg Ms

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361979

Spécification des échantillons **BGP18 (0-1m)**

* 		Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Seules les activités non accréditées sont identifiées par le symbole " *)	Minéralisation à l'eau régale		0			NF-EN 16174; NF EN 13657 (déchets)
ymb	Métaux					
r le sy	Arsenic (As)	mg/kg Ms	13	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
s pa	Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, EN 16174
ıtifiée	Chrome (Cr)	mg/kg Ms	31	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
ider	Cuivre (Cu)	mg/kg Ms	8,5	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
son	Mercure (Hg)	mg/kg Ms	0,05	0,05	+/- 20	Conforme à ISO 16772 et EN 16174
itées	Nickel (Ni)	mg/kg Ms	12	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
créd	Plomb (Pb)	mg/kg Ms	17	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
on ac	Zinc (Zn)	mg/kg Ms	18	1	+/- 22	Conforme à EN-ISO 11885, EN 16174
S DC	Hydrocarbures Aromatiques Po		es (ISO)			
vité	Naphtalène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
īĊţ	Acénaphtylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
S	Acénaphtène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
s e	Fluorène	mg/kg Ms	0,080	0,05	+/- 46	équivalent à NF EN 16181
<u>le</u>	Phénanthrène	mg/kg Ms	0,35	0,05	+/- 20	équivalent à NF EN 16181
Se	Anthracène	mg/kg Ms	0,12	0,05	+/- 24	équivalent à NF EN 16181
	Fluoranthène	mg/kg Ms	0,48	0,05	+/- 17	équivalent à NF EN 16181
201	Pyrène	mg/kg Ms	0,45	0,05	+/- 19	équivalent à NF EN 16181
5.5	Benzo(a)anthracène	mg/kg Ms	0,20	0,05	+/- 14	équivalent à NF EN 16181
17025:2017.	Chrysène	mg/kg Ms	0,17	0,05	+/- 14	équivalent à NF EN 16181
17	Benzo(b)fluoranthène	mg/kg Ms	0,19	0,05	+/- 12	équivalent à NF EN 16181
Ш	Benzo(k)fluoranthène	mg/kg Ms	0,11	0,05	+/- 14	équivalent à NF EN 16181
EN ISO/IEC	Benzo(a)pyrène	mg/kg Ms	0,20	0,05	+/- 14	équivalent à NF EN 16181
<u>S</u>	Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05	T/- 1-	équivalent à NF EN 16181
	Benzo(g,h,i)pérylène	mg/kg Ms	0,12	0,05	+/- 14	équivalent à NF EN 16181
on						·
sel	Indéno(1,2,3-cd)pyrène	mg/kg Ms	0,12	0,05	+/- 17	équivalent à NF EN 16181
es	HAP (6 Borneff) - somme	mg/kg Ms	1,22			équivalent à NF EN 16181
lité	Somme HAP (VROM)	mg/kg Ms	1,87 ×)			équivalent à NF EN 16181
accréditées selon	HAP (EPA) - somme	mg/kg Ms	2,59 x)			équivalent à NF EN 16181
ည္ထ	Composés aromatiques					
ij	Benzène	mg/kg Ms	<0,050	0,05		Conforme à ISO 22155
sont	Toluène	mg/kg Ms	<0,050	0,05		Conforme à ISO 22155
ent	Ethylbenzène	mg/kg Ms	<0,050	0,05		Conforme à ISO 22155
ш	m,p-Xylène	mg/kg Ms	<0,10	0,1		Conforme à ISO 22155
ಠ	o-Xylène	mg/kg Ms	<0,050	0,05		Conforme à ISO 22155
o O	Somme Xylènes	mg/kg Ms	n.d.	0,00		Conforme à ISO 22155
S		mg/kg Ms	n.d.			Conforme à ISO 22155
dans ce docum	Hydrocarbures totaux (ISO)	g,gc	mai			OGINGINIO 4 100 22 100
es	Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20		ISO 16703
orte	Fraction C10-C12	mg/kg Ms	<4,0	4		ISO 16703
dd		mg/kg Ms	<4,0	4		ISO 16703
ā		mg/kg Ms	<2,0	2		ISO 16703
activités rapportées		mg/kg Ms	2,6	2	+/- 21	ISO 16703
ίξi		mg/kg Ms	3,0	2		ISO 16703
ac		ITIY/NY IVIS	3,0		+/- 21	130 10703

page 2 de 4

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361979

Spécification des échantillons **BGP18 (0-1m)**

*.		Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
symbole " *)	Fraction C28-C32	*) mg/kg Ms	4,1	2		ISO 16703
οqι		*) mg/kg Ms	3,1	2	+/- 21	ISO 16703
syn	Fraction C36-C40	*) mg/kg Ms	<2,0	2		ISO 16703
	Polychlorobiphényles					
activités non accréditées sont identifiées par le	Somme 6 PCB	mg/kg Ms	n.d.			NEN-EN 16167
es	Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.			NEN-EN 16167
tifié	PCB (28)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
gen	PCB (52)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
i i	PCB (101)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
SO	PCB (118)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
es	PCB (138)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
dité	PCB (153)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
cré	PCB (180)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
ac	Analyses sur éluat après lixivi	ation				
υQ	L/S cumulé	ml/g	10,0	0,1		Selon norme lixiviation
ésı	Conductivité électrique	μS/cm	160	5	+/- 10	Selon norme lixiviation
ΞĚ	рН		8,9	0	+/- 5	Selon norme lixiviation
act	Température	°C	19,7	0		Selon norme lixiviation
les	Analyses Physico-chimiques	sur éluat				
les	Résidu à sec	mg/l	110	100	+/- 22	Equivalent à NF EN ISO 15216
Seules les	Fluorures (F)	mg/l	0,3	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
17.	Indice phénol	mg/l	<0,010	0,01		NEN-EN 16192
:50	Chlorures (CI)	mg/l	5,0	0,1	+/- 10	Conforme à ISO 15923-1
)25	Sulfates (SO4)	mg/l	19	5	+/- 10	Conforme à ISO 15923-1
17(COT	mg/l	18	1	+/- 10	conforme EN 16192
EC	Métaux sur éluat					
SO/I	Antimoine (Sb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Ш	Arsenic (As)	µg/l	6,4	5	+/- 10	Conforme à EN-ISO 17294-2 (2004)
selon	Baryum (Ba)	µg/l	<10	10		Conforme à EN-ISO 17294-2 (2004)
ées s	Cadmium (Cd)	µg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
rédit	Chrome (Cr)	µg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
t acc	Cuivre (Cu)	µg/l	21	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)
io	Mercure (Hg)	μg/l	<0,03	0,03		NEN-EN 1483 (2007)
ent s	Molybdène (Mo)	µg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
cum	Nickel (Ni)	μg/l	5,3	5	+/- 11	Conforme à EN-ISO 17294-2 (2004)
e do	Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
ลทร c	Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
ées dans ce document sont accréditées selon EN ISO/IEC 17025:2017.	Zinc (Zn)	µg/l	2,6	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. Le calcul de l'incertitude de mesure combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l'expression de l'incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d'élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 02.03.2021 N° Client 35004351

RAPPORT D'ANALYSES 1016265 - 361979

Spécification des échantillons BGP18 (0-1m)

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 22.02.2021 Fin des analyses: 26.02.2021

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

1. Hognenet

AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156 Chargée relation clientèle

Annexe 3. Méthodes analytiques, LQ et flaconnage

Cette annexe contient 2 pages

AGROLAB Flaconnage

	At-West Aromatische en	AL-West	AL-West		At most	
Nom Hollandais	chloorhoudende oplosmiddelen	Waterdampvluchtige fenolen	Cyanide	Methaan/ethaan/etheen CKW- afbraak	pH/Ec	Blanco
Equivalence Française	BTEX, COHV	Indice phénols	Cyanures	Méthane/éthane/éthylène biodégradation, paquet étendu	pH/Conductivité	Blanc
Contenance	100 mL	100 mL	100 mL	100 mL	100 mL	500 mL
Conservateur	HNO3	H3PO4/CuSO4	NaOH	HNO3	sans	sans
	HCT méthode interne - 100 mL BTEX et COHV - 100 mL	Indice phénols - 40 mL	Cyanures libres - 40 mL Cyanures totaux - 40 mL	Méthane/éthane/éthylène biodégradation, paquet étendu - 100 mL	Chrome VI - 100 mL Conductivité - 50 mL	Alcools et solvants polaires - 100 mL AOX - 500 mL
Analyses	Chlorobenzènes volatils - 80 mL GC-MS volatils - 100 mL Hydrocarbures volatils C6-C10 - 80 mL Solvants bromés - 80 mL				Fluorures - 20 mL Métaux lourds avec filtration au labo - 100 mL Nitrate - 40 mL Nitrite - 40 mL	Biphényl et biphényléthers - x 2 bouteilles Bromures - 60 mL Chlorobenzènes non volatils - x 2 bouteilles Chlorures - 40 mL
Quantité					pH - 40 mL Sulfate - 60 mL	Couleur - 100 mL DBO5 - x 2 bouteilles
					Gallace Go III.	Dioxines - x 2 bouteilles GC-MS non volatils - x 2 bouteilles HAP Interne - 100 mL HAP ISO - x 2 bouteilles Hulles et graisses - x 2 bouteilles
Nom Hollandais	stikstof ammonium /stikstof Kjeldahl/CZV	Zware metalen	ТРН	clhoor - en alkylfenolen		Matières inhibitrices - x 2 bouteilles
Equivalence Française	DCO /azote ammoniacal/azote	Métaux lourds	EOX HCT ISO HCT 10 µg/L	Phénois et chlorophénois		MES - 500 mL
Contenance	Kjeldahl/phosphore total 250 mL	100 mL	500 mL	500 mL		INEO - 300 IIIE
Conservateur	H2SO4	HNO3	HNO3	H3PO4		Organoétains - 500 mL
Code étiquette	41-8-250 / LV2490	2-39-8 / LV2265	945-5 / LV2634	23-55-5 / LV2600		
,	Ammonium NH4+ - 50 mL Azote Kjeldhal - 100 mL	Métaux lourds - 100 mL	EOX - x 2 bouteilles HCT ISO - x 2 bouteilles	Phénols et chlorophénols - x 2 bouteilles		Orthophosphates - 60 mL PCB - 100 mL
Analyses	COT - 200 mL		HCT seuil 10 µg/l - x 2 bouteilles TPH-MADEP - x 2 bouteilles			Pesticides organo-N et P - x 2 bouteilles Pesticides organochlorés - 100 mL Sulfures - 400 mL
	DCO - 80 mL Phosphore total - 60 MI					

Matrice sols

Part	Désignation 🏋	Catégorie d'article	Méthode	LOUII EFÇ	Unités 🕌
Manual State Manu	Cyanures libres			1	mg CN/kg
Publications about our CPG, finance (CPG-06) PROFE, Publications at CPG-06 (Public CPG-06) PROFE, Public CPG-06 (Public CPG-06) PROFE,	Cyanures totaux	Autres/Sols & Déchets/Analyses	NEN 6655 eq. ISO/DIS 17380 - DIN ISO 11262	1	mg CN/kg
Discretification Color Color Color Color Color Color Color Color Color Col	Indice phénols	Autres/Sols & Déchets/Analyses	EN ISO 14402	0,1	mg/kg
Decision (Annual Proposition State (2014) Decision (Annual Proposition State (2014) Decision (20	Hydrocarbures totaux par CPG, fraction C10-C40 ; PROFIL ORGANIQUE QUALITATIF (C10 - C40)			20	mg/kg
December DE CEL et - CEL CEL 19	Hydrocarbures totaux par CPG, fraction C10-C40 ; PROFIL ORGANIQUE QUALITATIF (C10 - C40)			20	mg/kg
Decision Analyses Deci	Hydrocarbures totaux volatils (C6 - C10) découpage fractions C6-C8 et >C8-C10			1	mg/kg
Pydiocarbure & COHVISion Pydiocarbure & COHV	Solvants chlorés (13 composés, chlorure de vinyle inclus)		Trichloroéthane, 1,1-Dichloroéthane, 1,1-Dichloroéthylène, 1,2 Cis-Dichloroéthylène, 1,2 Trans-Dichloroéthylène, 1,2-Dichloroéthane, Chloroforme, Chlorure de vinyle, Dichlorométhane, Tétrachloréthylène, Tetrachlorure de Carbone, Trichloréthylène	0,02 à 0,1	mg/kg
Dechnosins Dec	Solvants chlorés (19 composés MACAOH)		Trichloroéthane, 1,1-Dichloroéthane, 1,1-Dichloroéthylène, 1,2 Cis-Dichloroéthylène, 1,2 Trans-Dichloroéthylène, 1,2-Dichloroéthane, Chloroforme, Chlorue de vinyle, Dichlorométhane, Tétrachlorue de Carbone, Trichloréthylène + extension MACAOH: Chlorométhane, Chloroéthane, Pentachloroéthane,	0,02 à 0,5	mg/kg
### December (13 composés) ##	BTEX (5 composés)			0,05-0,1	mg/kg
Chicordenzelanes volates (7 composés) Profitociantures & AU-HYVISION	BTEX bilan étendu (13 composés)	Hydrocarbures & COHV/Sols &	Méthode interne basé sur ISO 22155 (Head-Space) : Benzène, Toluène, Ethyl benzène, m+p Xylène, o-Xylène, Naphtalène, Styrène, a-Méthylstyrène, Propylbenzène, iso-Propylbenzène, 1,2,3-Triméthylbenzène, 1,2,4-Triméthylbenzène,	0,05-0,1	mg/kg
Deches Analyses	Chlorobenzènes volatils (7 composés)		1,2-dichlorobenzène ; 1,3-dichlorobenzène ;1,4-dichlorobenzène ; 1,2,3-	0,1	mg/kg MS
Distrimonés (Prisonnes de Chemistrianes & CU-HIVSSes (Septionnes) (Control of the Control of the	Chlorobenzènes non-volatils (4 composés)			1	μg/kg MS
Metaux/Sole & Dechets/Analyses	COV bromés		Dibromochlorométhane, Dichlorobromométhane, Dibromoethane, Tribromométhane	0,1	mg/kg
Hydrocarbures & COHV/Sols & Déchets/Analyses Michael Notes Déchets/Analyses Déchets	Hydrocarbures par TPH (Liste réduite)		8 fractions aliphatiques + 8 fractions aromatiques (Cf Annexe 1). Analyse par GC/MS	-	voir Annexe 1
HaPP (16 - liste EPA)	HAP (16 - liste EPA)	Hydrocarbures & COHV/Sols &	méthode interne : Naphtalène, Acénaphtène, Acénaphtylène, Anthracène, Benzo(a)anthracène, Benzo(a)pyrène, Benzo(b) fluoranthène, Benzo(g,h,i)pérylène, Benzo(k) fluoranthène, Chrysène, Dibenzo(a,h)anthracène, Fluoranthène, Fluorène,	0,05	mg/kg
Dechets/Analyses Dechets/Analyses PCB & stype dioxine (12 congénères) PCB & stype dioxine (12 congén	HAP (16 - liste EPA)		Benzo(a)anthracène, Benzo(a)pyrène, Benzo(b) fluoranthène, Benzo(g,h,i)pérylène, Benzo(k) fluoranthène, Chrysène, Dibenzo(a,h)anthracène, Fluoranthène, Fluorène,	0,05	mg/kg
Déchets/Analyses PCB Dioxines et furanes (17 congénères) PCB Dioxines et furanes/Sols & Déchets/Analyses Pesticides organochlorés (21 composée) Pesticides/Sols & Déchets/Analyses Pesticides organochlorés (21 composée) Pesticides/Sols & Déchets/Analyses Pesticides organochlorés (21 composée) Pesticides/Sols & Déchets/Analyses Pesticides par CPG/SM: Azinphos-éthyle, Peropazine, Cyanazine, Desméthrine, Prométhrine, Prométhrine	PCB congénères réglementaires (7 composés)		laboratoire): PCB 28, 52, 101, 118, 138, 153, 180	1	μg/kg
Pesticides organochlorés (21 composée) Pesticides/Nalyses Pesticides organochlorés (21 composée) Pesticides organochlorés (21 composée) Pesticides organochlorés (21 composée) Pesticides Organo-Azotés Pesticides Organo-Azotés Pesticides Organo-Azotés Pesticides Organo-Azotés Pesticides Organo-Azotés Pesticides Organo-Azotés Pesticides Organo-Phosphorés P	PCB de type dioxine (12 congénères)			1 à 10	ng//kg
Pesticides organochlorés (21 composés) Pesticides (21 composés) Pesticides organochlorés (21 composés) Pesticides (21 c	Dioxines et furanes (17 congénères)		selon la NF EN 1948, GC-SM haute résolution -	1	ng//kg
Presticides Organo-Pactores Déchets/Analyses Propazine, Simazine, Terbutrine, Terbutylazine V,1 a U,2 mg/kg Pesticides Organo-Phosphorés Pesticides/Sols & Déchets/Analyses Organo-Phospticides par CP-G/SM: Azinphos-ethyle, Coumaphos, diazinon, Diméthoate, Disulphoton, Ethion, Fentitorion, Fentinon, Méthidathon, Méthidathon, Méthidathon, Méthidathon, Méthidathon, Penthion, Penthion	Pesticides organochlorés (21 composés)		laboratoire): HCH alpha, HCH béta, HCB, Lindane, HCH delta, Heptachlore, cis- Heptachlore époxyde, Endosulfan alpha, Aldrine, Dieldrine, Endrine, Isodrine, Telodrine, Endosulfan alpha, o,p'-DDE, p,p'-DDE, o,p'-DDD, p,p'-DDD, o,p'-DDT, p,p'-	1	µg/kg
Pesticides Organo-Phosphorés Pesticides/Sols & Déchets/Analyses Organo-N-pesticides par CPG/SM: Azinphos-éthyle, Azinphos-éthyle, Bromophos-éthyle, Chirorpyrophos-éthyle, Choropyrophos-éthyle, Choropyrophos (pathods) pathods pathods (pathods) pathods (pa	Pesticides Organo-Azotés			0,1 à 0,2	mg/kg
Baryum Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 1 mg Ba/kg Cadmium Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 0,1 mg Cd/kg Chrome total Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 0,2 mg Cr/kg Chrome hexavalent Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 (rajouter une minéralisation) 0,5 mg Co/kg Cuivre Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 0,2 mg Cu/kg Mercure Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 0,2 mg Hg/kg Nickel Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 0,5 mg Ni/kg Plomb Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 0,5 mg Pb/kg Sélénium Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 (rajouter une minéralisation) 1 mg Se/kg Zinc Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 (rajouter une minéralisation) 1 mg Zn/kg	Pesticides Organo-Phosphorés	Pesticides/Sols &	Organo-N-pesticides par CPG/SM: Azinphos-éthyle, Azinphos-méthyle, Bromophos- éthyle, Bromophos-méthyle, Chloropyrophos-éthyle, Coumaphos, diazinon, Diméthoate, Disulphoton, Ethion, Fénitrothion, Fenthion, Malathion, Méthidathon,	0,1 à 0,5	mg/kg
Cadmium Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 0,1 mg Cd/kg Chrome total Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 0,2 mg Cr/kg Chrome hexavalent Métaux/Sols & Déchets/Analyses DIN 38405-D24 1 mg Cr/Vkg Cobalt Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 (rajouter une minéralisation) 0,5 mg Co/kg Cuivre Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 0,2 mg Cu/kg Mercure Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 0,5 mg Ni/kg Nickel Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 0,5 mg Pb/kg Plomb Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 (rajouter une minéralisation) 1 mg Se/kg Zinc Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 1 mg Zh/kg	Arsenic	Métaux/Sols & Déchets/Analyses	ICP-AES NF EN ISO 11 885	1	mg As/kg
Chrome total Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 0,2 mg Cr/kg Chrome hexavalent Métaux/Sols & Déchets/Analyses DIN 38405-D24 1 mg Cr/kg Cobalt Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 (rajouter une minéralisation) 0,5 mg Co/kg Cuivre Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 0,2 mg Cu/kg Mercure Métaux/Sols & Déchets/Analyses ISO 16772 0,05 mg Hy/kg Nickel Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 0,5 mg Ni/kg Plomb Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 0,5 mg Pb/kg Sélénium Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 (rajouter une minéralisation) 1 mg Se/kg Zinc Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 1 mg Zh/kg	Baryum	Métaux/Sols & Déchets/Analyses	ICP-AES NF EN ISO 11 885	1	mg Ba/kg
Chrome hexavalent Métaux/Sols & Déchets/Analyses DIN 38405-D24 1 mg Cr/V/kg Cobalt Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 (rajouter une minéralisation) 0,5 mg Co/kg Cuivre Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 0,2 mg Cu/kg Mercure Métaux/Sols & Déchets/Analyses ISO 16772 0,05 mg Hy/kg Nickel Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 0,5 mg Ni/kg Plomb Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 0,5 mg Pb/kg Sélénium Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 (rajouter une minéralisation) 1 mg Se/kg Zinc Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 1 mg Zn/kg	Cadmium	Métaux/Sols & Déchets/Analyses	ICP-AES NF EN ISO 11 885	0,1	mg Cd/kg
Cobalt Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 (rajouter une minéralisation) 0,5 mg Co/kg Cuivre Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 0,2 mg Cu/kg Mercure Métaux/Sols & Déchets/Analyses ISO 16772 0,05 mg Hg/kg Nickel Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 0,5 mg Ni/kg Plomb Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 0,5 mg Pb/kg Sélénium Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 (rajouter une minéralisation) 1 mg Se/kg Zinc Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 1 mg Zn/kg	Chrome total	Métaux/Sols & Déchets/Analyses	ICP-AES NF EN ISO 11 885	0,2	mg Cr/kg
Cuivre Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 0,2 mg Cu/kg Mercure Métaux/Sols & Déchets/Analyses ISO 16772 0,05 mg Hg/kg Nickel Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 0,5 mg Ni/kg Plomb Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 0,5 mg Pb/kg Sélénium Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 (rajouter une minéralisation) 1 mg Se/kg Zinc Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 1 mg Zh/kg	Chrome hexavalent	Métaux/Sols & Déchets/Analyses	DIN 38405-D24	1	mg CrVl/kg
Cuivre Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 0,2 mg Cu/kg Mercure Métaux/Sols & Déchets/Analyses ISO 16772 0,05 mg Hg/kg Nickel Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 0,5 mg Ni/kg Plomb Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 0,5 mg Pb/kg Sélénium Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 (rajouter une minéralisation) 1 mg Se/kg Zinc Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 1 mg Zn/kg	Cobalt	Métaux/Sols & Déchets/Analyses	ICP-AES NF EN ISO 11 885 (rajouter une minéralisation)	0,5	mg Co/kg
Métaux/Sols & Déchets/Analyses ISO 16772 0,05 mg Hg/kg Nickel Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 0,5 mg Ni/kg Plomb Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 0,5 mg Pb/kg Sélénium Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 (rajouter une minéralisation) 1 mg Se/kg Zinc Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 1 mg Zn/kg	Cuivre	Métaux/Sols & Déchets/Analyses		0,2	mg Cu/kg
Nickel Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 0,5 mg Ni/kg Plomb Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 0,5 mg Pb/kg Sélénium Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 (rajouter une minéralisation) 1 mg Se/kg Zinc Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 1 mg Zh/kg	Mercure	-	ISO 16772		
Plomb Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 0,5 mg Pb/kg Sélénium Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 (rajouter une minéralisation) 1 mg Se/kg Zinc Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 1 mg Zh/kg	Nickel				
Sélénium Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 (rajouter une minéralisation) 1 mg Se/kg Zinc Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 1 mg Zn/kg	Plomb				
Zinc Métaux/Sols & Déchets/Analyses ICP-AES NF EN ISO 11 885 1 mg Zn/kg	Sélénium	-			
	Zinc	-			
	Antimoine	Métaux/Sols & Déchets/Analyses	ICP-AES NF EN ISO 11 885	0,5	mg Sb/kg

Annexe 4. **Propriétés physico-chimiques**

Cette annexe contient 4 pages.

LEGENDE Volatilité :

LEGENDE Solubilité : ++ : S>100 mg/l

++ :Pv > 1000 PA (COV)

+ : 1000 > Pv > 10 Pa (COV)

- : 10 >P> 10-2 Pa (non COV)

--: 10-2 >P> 10-5 Pa (non COV)

-: 1>S>0.01 mg/l

+:100>S>1

mg/l

--: S<0.01 mg/l

	Volatilité	solubilité	Classement	Mention de danger	classement c	cancérogén	éicité
CAS n°R	Pv	S	symboles	Mendon de danger	UE	CIRC (IARC)	EPA

METAUX ET METALLOIDES

Antimoine (Sb)	7440-36-0	non adequat	non adequat	SGH07, SGH09	H332, H302, H411	C2	-	-
Arsenic (As)	7440-38-2	non adequat	non adequat	SGH06, SGH09	H331, H301, H400, H410	C1A	1	А
Baryum (Ba)	non adéquat	non adequat	Soluble dans l'éthanol ?	-	-	-	-	D
Cadmium (Cd)	7440-43-9	non adequat	non adequat	SGH06, SGH08, SGH09	H350, H341, H361fd, H330, H372, H400, H410	C1B/C2 M1B/M2 R1B/R2	1	prob canc
Chrome III (CrIII)	1308-38-9	non adequat	non adequat	-	-	-	3	D
Chrome VI (CrVI)	trioxyde de Cr 1333-82-0	non adequat	non adequat	SGH03, SGH05, SGH06, SGH08, SGH09	H271, H350, H340, H361f, H330, H311, H301, H372, H314, H334, H317, H410	C1A M1B R2	1	A (inh°) D (oral)
Cobalt (Co)	7440-48-4	non adequat	non adequat	SGH08	H334, H317, H413	C1B M2 R1B	2B	-
Cuivre (Cu)	7440-50-8	non adequat	non adequat	-	-	-	3	D
Etain (Sn)	non adéquat	non adequat	non adequat	-	-	-	-	-
Manganèse (Mn)	non adéquat	non adequat	non adequat	SGH07 (dioxyde)	H332, H302 (dioxyde)	-	-	D
Mercure (Hg)	7439-97-6	non adequat	non adequat	SGH06, SGH08, SGH09	H360D, H330, H372, H400, H410	R1B	3	CàD
Molybdène (Mo)	7439-98-7	non adequat	non adequat	trioxyde : SGH07, SGH08	Trioxyde : H351, H319, H335	trioxyde : C2	-	-
Nickel (Ni)	7440-02-0	non adequat	non adequat	SGH07, SGH08	H351, H372, H317, H412	C2	2B	А
Plomb (Pb)	7439-92-1	non adequat	non adequat	SGH07, SGH08, SGH09	H360Df, H332, H373, H400, H410	R1A	2B	B2
Sélénium (Se)	7782-49-2	non adequat	non adequat	SGH06, SGH08	H331, H301, H373, H413	-	3	D
Thallium (TI)	7440-28-0	non adequat	non adequat	SGH06, SGH08	H330, H300, H373, H413	-	-	D
Vanadium (Va)	7440-62-2	non adequat	non adequat	-	-	-	3	D
Zinc (Zn)	7440-66-6 (poudre)	non adequat	non adequat	SGH02 (pyrophorique) SGH09	H250, H260 (pyrophorique) H400, H410	-	-	D
Naphtalène	91-20-3	+	+	SGH07, SGH08, SGH09	H351, H302, H400, H410	C2	2B	С
Acenaphtylène	208-96-8	-	+		-	-	-	D
Acenaphtène	83-29-9	-	+	-	-	-	-	-
Fluorène	86-73-7	-	+	-	-	-	3	D
Phénanthrène	85-01-8	-	+	-	-	-	3	D
Anthracène	120-12-7		-	-	-	-	3	D
Fluoranthène	206-44-0		-	-	-	-	3	D

LEGENDE Volatilité :

++ :Pv > 1000 PA (COV)

- : 10 >P> 10-2 Pa (non COV)

LEGENDE Solubilité :

++ : S>100 mg/l

-: 1>S>0.01 mg/l

+:100>S>1

	+ : 1000 > Pv > 10 Pa (COV)			: 10-2 >P> 10-5	Pa (non COV)	mg/l: S<0.01		01 mg/l
		Volatilité	solubilité	Classement		classement	cancérogér	néicité
	CAS n°R	Pv	S	symboles	Mention de danger	UE	CIRC (IARC)	EPA
Pyrène	129-00-0		-	-	-	-	3	D
Benzo(a)anthracène	56-55-3			SGH08, SGH09	H350, H400, H410	C1B	2B	B2
Chrysene	218-01-9		-	SGH08, SGH09	H350, H341, H400, H410	C1B M2	3	B2
benzo(b)fluoranthène	205-99-2			SGH08, SGH09	H350, H400, H410	C1B	2B	B2
benzo(k)fluoranthène	207-08-9			SGH08, SGH09	H350, H400, H410	C1B	2B	B2
Benzo(a)pyrène	50-32-8			SGH07, SGH08, SGH09	H340, H350, H360FD, H317, H400, H410	C1B M1B	1	B2
Dibenzo(a,h)anthracène	53-70-3			SGH08, SGH09	H350, H400, H410	C1B	2A	B2
benzo(g,h,i) pérylène	191-24-2			-		-	3	D
indéno(1,2,3-c,d)pyrène	193-39-5		-	-	-	-	2B	B2

LEGENDE Volatilité :

LEGENDE Solubilité : ++ : S>100

++ :Pv > 1000 PA (COV)

- : 10 >P> 10-2 Pa (non COV)

mg/l -: 1>S>0.01 mg/l

+:100>S>1

mg/l --: S<0.01 mg/l

+ : 1000 > Pv > 10 Pa (COV) -- : 10-2 >P> 10-5 Pa (non COV)

| Volatilité | Solubilité | Classement |

	Volatilité	solubilité	Classement	Mention de danger	classement o	cancérogén	néicité
CAS n°R	Pv	S	symboles	Mendon de danger	UE	CIRC (IARC)	EPA

COMPOSES AROMATIQUES MONOCYLCIQUES

benzène	71-43-2	++	++	SGH02, SGH07, SGH08	H225, H350, H340, H372, H304, H319, H315	C1A M1B	1	А
toluène	108-88-3	++	++	SGH02, SGH07, SGH08	H225, H361d, H304, H373, H315, H336	R2	3	D
ethylbenzène	100-41-4	+	++	SGH02, SGH07	H225, H332	=	2B	-
xylènes	1330-20-7	+	++	SGH02, SGH07	H226, H332, H312, H315	-	3	-
styrène	100-42-5	+	++	SGH02, SGH07	H226, H332, H319, H315	-	2B	-
cumène (isopropylbenzène)	98-82-8	+	+	SGH02, SGH07, SGH08, SGH09	H226, H304, H335, H411	-	2B	D
mesitylène (1,3,5 Triméthylbenzène)	108-67-8	+	+	SGH02, SGH07, SGH09	H226, H335, H411	-		-
pseudocumène (1,2,4 Triméthylbenzène)	95-63-6	+	+	SGH02, SGH07, SGH09	H226, H332, H319, H335, H315, H411	-	-	-

COMPOSES ORGANO-HALOGENES VOLATILS

PCE (tétrachloroéthylène)	127-18-4	++	++	SGH08, SGH09	H351, H411	C2	2A	B1
TCE (trichloroéthylène)	79-01-6	++	++	SGH07, SGH08	H350, H341, H319, H315, H336, H412	C1B M2	1	А
cis 1,2DCE (dichloroéthylène)	156-59-2	++	++	SGH02, SGH07	H225, H335, H412	-	-	D
trans 1,2DCE (dichloroéthylène)	156-60-5	***	++	SGH02, SGH07	H225, H335, H412	-	-	D
1,1 DCE (1,1 dichloroéthylène)	75-35-4	++	++	SGH02, SGH07, SGH08	H224, H351, H332	C2	3	С
VC (chlorure de vinyle)	75-01-4	++	++	SGH02, SGH08	H220, H350	C1A	1	Α
1,1,2 trichloroéthane	79-00-5	++	++	SGH07, SGH08	H351, H332, H312, EUH066	C2	3	С
1,1,1 trichloroéthane	71-55-6	++	++	SGH07	H332, EUH059	-	3	D
1,2 dichloroéthane	107-06-2	++	++	SGH02, SGH07, SGH08.	H225, H350, H302, H319, H335, H315	C1B	2B	B2
1,1 dichloroéthane	75-34-3	++	++	SGH02, SGH07	H225, H302, H319, H335, H412	-	-	С
Tétrachlorométhane	56-23-5	++	++	SGH06, SGH08	H351, H331, H311, H301, H372, H412, EUH059	C2	2B	B2
TCmA (trichlorométhane ou chloroforme)	67-66-3	++	++	SGH07, SGH08	H351, H302, H373, H315	C2	2B	B2
dichlorométhane	75-09-2	++	++	SGH08, SGH09	H351	C2	2B	B2
trichlorobenzènes	87-61-1 120-82-1 108-70-3	+	+	SGH07, SGH09	H302, H315, H400, H410	-	-	(1,2,4) D
1,2 dichlorobenzène	95-50-1	+	+	SGH07, SGH09	H302, H319, H335, H315, H400, H410	-	3	D
1,3 dichlorobenzène	541-73-1	+	++	-	-	-	3	D
1,4 dichlorobenzène	106-46-7	+	+	SGH08, SGH09	H351, H319, H400, H410	C2	2B	-
chlorobenzène	108-90-7	++	++	SGH02, SGH07, SGH09	H226, H332, H411	-	-	D

 Réf : CESICE210146 / RESICE12466-01
 CLBE / PC / SOGA
 26/03/2021
 Annexes

LEGENDE Volatilité : LEGENDE Solubilité :

++ :Pv > 1000 PA (COV) -: 10 >P> 10-2 Pa (non COV) mg/l

++: S>100 mg/l -: 1>S>0.01 mg/l

+: 1000 > Pv > 10 Pa (COV) --: 10-2 >P> 10-5 Pa (non COV) +: 100> S>1

mg/l --: S<0.01 mg/l

	Volatilité	solubilité	Classement	Mention de danger	classement o	cancérogén	éicité
CAS n°R	Pv	S	symboles	Mention de dangei	UE	CIRC (IARC)	EPA

HYDROCARBURES SUIVANT LES TPH

Aliphatic nC>5-nC6	non adéquat	++	+				
Aliphatic nC>6-nC8	"	++	+				
Aliphatic nC>8-nC10	"	+	-				
Aliphatic nC>10-nC12	"	+	-				
Aliphatic nC>12-nC16	п	-		white spirit, essences			
Aliphatic nC>16-nC35	II .	-		spéciales,	havet to an a		
Aliphatic nC>35	"			solvants aromatiques	tout type d'hydrocarbures :	classement fonction des	
Aromatic nC>5-nC7 benzène	п	++	++	légers, pétroles lampants	H350, H340, H304	hydrocarbures	
Aromatic nC>7-nC8 toluène	II .	++	++	(kérosène) :			
Aromatic nC>8-nC10	"	+	+	SGH08			
Aromatic nC>10-nC12	"	+	+				
Aromatic nC>12-nC16	"	-	+				
Aromatic nC>16-nC21	"	-	-				
Aromatic nC>21-nC35	"						

Annexe 5. Glossaire

AEA (Alimentation en Eau Agricole) : Eau utilisée pour l'irrigation des cultures

AEI (Alimentation en Eau Industrielle) : Eau utilisée dans les processus industriels

AEP (Alimentation en Eau Potable) : Eau utilisée pour la production d'eau potable

ARIA (Analyse, Recherche et Information sur les Accidents) : base de données répertorie les incidents ou accidents qui ont, ou auraient, pu porter atteinte à la santé ou la sécurité publiques ou à l'environnement.

ARR (Analyse des risques résiduels) : Il s'agit d'une estimation par le calcul (et donc théorique) du risque résiduel auquel sont exposées des cibles humaines à l'issue de la mise en œuvre de mesures de gestion d'un site. Cette évaluation correspond à une EQRS.

ARS (Agence régionale de santé) : Les ARS ont été créées en 2009 afin d'assurer un pilotage unifié de la santé en région, de mieux répondre aux besoins de la population et d'accroître l'efficacité du système.

BASIAS (Base de données des Anciens Sites Industriels et Activités de Service) : Cette base de données gérée par le BRGM recense de manière systématique les sites industriels susceptibles d'engendrer une pollution de l'environnement.

BASOL: Base de données gérée par le Ministère de l'Ecologie, du Développement Durable et de l'Energie recensant les sites et sols pollués ou potentiellement pollués appelant une action des pouvoirs publics, à titre préventif ou curatif.

Biocentre : Ces installations sont classées pour la protection de l'environnement et sont soumises à autorisation préfectorale. Elles prennent en charge les déchets en vue de leur traitement basé sur la biodégradation aérobie de polluants chimiques.

BTEX (Benzène, Toluène, Ethylbenzène, Xylènes): Les BTEX (Benzène, Toluène, Ethylbenzène et Xylènes) sont des composés organiques mono-aromatiques volatils qui ont des propriétés toxiques.

COHV (Composés organo-halogénés volatils): Solvants organiques chlorés aliphatiques volatils qui ont des propriétés toxiques et sont ou ont été couramment utilisés dans l'industrie.

DREAL (Directions régionales de l'environnement, de l'aménagement et du logement) : Cette structure régionale du ministère du Développement durable pilote les politiques de développement durable résultant notamment des engagements du Grenelle Environnement ainsi que celles du logement et de la ville.

DRIEE (Direction régionale et interdépartementale de l'environnement et de l'énergie) : Service déconcentré du Ministère en charge de l'environnement pour la région parisienne, la DRIEE met en œuvre sous l'autorité du Préfet de la Région les priorités d'actions de l'État en matière d'Environnement et d'Énergie et plus particulièrement celles issues du Grenelle de l'Environnement. Elle intervient dans l'ensemble des départements de la région grâce à ses unités territoriales (UT).

Eluat: voir lixiviation

EQRS (Evaluation quantitative des risques sanitaires) : Il s'agit d'une estimation par le calcul (et donc théorique) des risques sanitaires auxquels sont exposées des cibles humaines.

ERI (Excès de risque individuel) : correspond à la probabilité que la cible a de développer l'effet associé à une substance cancérogène pendant sa vie du fait de l'exposition considérée. Il s'exprime sous la forme mathématique suivante 10⁻ⁿ. Par exemple, un excès de risque individuel de 10⁻⁵ représente la probabilité supplémentaire, par rapport à une personne non exposée, de développer un cancer pour 100 000 personnes exposées pendant une vie entière.

ERU (Excès de risque unitaire) : correspond à la probabilité supplémentaire, par rapport à un sujet non exposé, qu'un individu contracte un cancer s'il est exposé pendant sa vie entière à une unité de dose de la substance cancérigène.

HAP (Hydrocarbures Aromatiques Polycycliques) : Ces composés constitués d'hydrocarbures cycliques sont générés par la combustion de matières fossiles. Ils sont peu mobiles dans les sols.

HAM (Hydrocarbures aromatiques monocycliques): Ces hydrocarbures constitués d'un seul cycle aromatiques sont très volatils, les BTEX* sont intégrés à cette famille de polluants..

HCT (Hydrocarbures Totaux) : Il s'agit généralement de carburants pétroliers dont la volatilité et la mobilité dans le milieu souterrain dépendent de leur masse moléculaire (plus ils sont lourds, c'est-à-dire plus la chaine carbonée est longue, moins ils sont volatils et mobiles).

 Réf : CESICE210146 / RESICE12466-01
 CLBE / PC / SOGA
 26/03/2021
 Annexes

IEM (Interprétation de l'état des milieux): au sens des textes ministériels du 8 février 2007, l'IEM est une étude réalisée pour évaluer la compatibilité entre l'état des milieux (susceptibles d'être pollués) et les usages effectivement constatés, programmés ou potentiels à préserver. L'IEM peut faire appel dans certains cas à une grille de calcul d'EQRS spécifique.

ISDI (Installation de Stockage de Déchets Inertes): Ces installations sont classées pour la protection de l'environnement sous le régime de l'enregistrement. Ce type d'installation permet l'élimination de déchets industriels inertes par dépôt ou enfouissement sur ou dans la terre. Sont considérés comme déchets inertes ceux répondant aux critères de l'arrêté ministériel du 12 décembre 2014.

ISDND (Installation de Stockage de Déchets Non Dangereux) : Ces installations sont classées pour la protection de l'environnement et sont soumises à autorisation préfectorale. Cette autorisation précise, entre autres, les capacités de stockage maximales et annuelles de l'installation, la durée de l'exploitation et les superficies de l'installation de la zone à exploiter et les prescriptions techniques requises.

ISDD (Installation de Stockage de Déchets Dangereux): Ces installations sont classées pour la protection de l'environnement et sont soumises à autorisation préfectorale. Ce type d'installation permet l'élimination de déchets dangereux, qu'ils soient d'origine industrielle ou domestique, et les déchets issus des activités de soins.

Lixiviation: Opération consistant à soumettre une matrice (sol par exemple) à l'action d'un solvant (en général de l'eau). On appelle lixiviat la solution obtenue par lixiviation dans le milieu réel (ex : une décharge). La solution obtenue après lixiviation d'un matériau au laboratoire est appelée un éluat.

PCB (Polychlorobiphényles): L'utilisation des PCB est interdite en France depuis 1975 (mais leur usage en système clos est toléré). On les rencontre essentiellement dans les isolants diélectriques, dans les transformateurs et condensateurs individuels. Ces composés sont peu volatils, peu solubles et peu mobiles.

Plan de Gestion : démarche définie par les textes ministériels du 8 février 2007 visant à définir les modalités de réhabilitation et d'aménagement d'un site pollué.

QD (Quotient de danger) : Rapport entre l'estimation d'une exposition (exprimée par une dose ou une concentration pour une période de temps spécifiée) et la VTR* de l'agent dangereux pour la voie et la durée d'exposition correspondantes. Le QD (sans unité) n'est pas une probabilité et concerne uniquement les effets à seuil.

VTR (Valeur toxicologique de référence): Appellation générique regroupant tous les types d'indices toxicologiques qui permettent d'établir une relation entre une dose et un effet (toxique à seuil d'effet) ou entre une dose et une probabilité d'effet (toxique sans seuil d'effet). Les VTR sont établies par des instances internationales (l'OMS ou le CIPR, par exemple) ou des structures nationales (US-EPA et ATSDR aux Etats-Unis, RIVM aux Pays-Bas, Health Canada, ANSES en France, etc.).

VLEP (Valeur Limite d'Exposition Professionnelle): Valeur limite d'exposition correspondant à la valeur réglementaire de concentration dans l'air de l'atmosphère de travail à ne pas dépasser durant plus de 8 heures (VLEP 8H) ou 15 minutes (VLEP CT); la VLEP 8H peut être dépassée sur de courtes périodes à condition de ne pas dépasser la VLEP CT.

 Réf : CESICE210146 / RESICE12466-01
 CLBE / PC / SOGA
 26/03/2021
 Annexes